
This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No. 871260

Autonomous Robotic Inspection and Maintenance on Ship Hulls and

Storage Tanks

Deliverable report – D7.2

Context

Deliverable title Virtual Reality for RealTime Mission Monitoring

Lead beneficiary RWTH

Author(s) Simon OEHRL

Sebastian PAPE

Torsten W. KUHLEN

Work Package WP7

Deliverable due date 31st March 2022

Document status

Version No. 1

Type DEMONSTRATION (REPORT)

Dissemination level PUBLIC

Last modified 04 April 2022

Status RELEASED

Date approved 04 April 2022

Approved by

Coordinator

Prof. Cédric Pradalier (CNRS)

Signature:

Declaration Any work or result described therein is genuinely a result of the BURWRIGHT2

project. Any other source will be properly referenced where and when

relevant.

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 1 version 1.2 status: released

TABLE OF CONTENTS

LIST OF FIGURES .. 1

HISTORY OF CHANGES .. 2

REFERENCED DOCUMENTS ... 2

ABBREVIATIONS .. 2

Executive summary ... 3

1. Connecting Unreal to ROS .. 3

2. VPN Acquisition .. 6

3. Robot Monitoring ... 6

3.1. Drones ... 6

3.2. Crawler .. 7

3.3. Underwater UAVs ... 9

4. User Interface Implementation .. 9

5. Evaluation of the suitability for field deployment ...11

6. Conclusion ..12

LIST OF FIGURES

Figure 1 : Data exchange between ROS and Unreal Engine. The user interacts with the application

developed in Unreal Engine via a head mounted display (HMD). The application uses the developed plugin

to communicate with the ROS bridge that is connected to a ROS core instance. ... 4

Figure 2 : Subscribing to and publishing a ROS topic. The Blueprint code necessary to publish a new topic

(top) or subscribe to an existing one (bottom). ... 4

Figure 3: Live demonstration of drone monitoring and steering using a VR application. 7

Figure 4 : Demonstration of crawler monitoring .. 8

Figure 5 : Projection and aggregation of images onto arbitrary 3D models ... 8

Figure 6: Demonstration of monitoring a Blueye Pioneer underwater UAV .. 9

Figure 7: User interface design concept ...10

Figure 8: Implementation status of the user interface design ...11

file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549859
file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549859
file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549859
file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549860
file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549860
file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549861
file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549862
file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549863
file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549864
file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549865
file:///C:/Users/lmonnier/Desktop/BugWright2/WP07/D7.2_Virtual_Reality_for_Real-Time_Mission_Monitoring_Laura.docx%23_Toc99549866

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 2 version 1.2 status: released

HISTORY OF CHANGES

Date Written by Description of change Approver Version No.

21.03.22 Simon OEHRL Start of the document 1

28.03.22 Sebastian PAPE Update 1.1

30.03.22 Laura MONNIER Proofreading and validation Cedric Pradalier 1.2

REFERENCED DOCUMENTS

 BURWRIGHT2 Description of the Action (DoA) Number 871260

This document will be stored on the file sharing site hosted by CNRS.

ABBREVIATIONS

VR Virtual Reality

ROS Robot Operating System

VPN Virtual Private Network

POI Points Of Interest

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 3 version 1.2 status: released

Executive summary
The goal of the BURWRIGHT2 project is to perform hull inspections using a fleet of different robots where

mission planning and supervision should be supported by virtual reality (VR) user interfaces. This document

aims to give an overview on the use of virtual reality for the user interface allowing the supervision of the

robot team. It discusses how the VR application connects to the robots and how data is exchanged between

them. It will present the different demonstrators that were built within the project to monitor all robot

types used in BURWRIGHT2. Finally, it will cover the joint effort between UT (University of Trier) and RWTH

to design and implement a sophisticated user interface for mission planning and supervision and discuss

the evaluation considerations for the use of such interfaces in the field.

1. Connecting Unreal to ROS
As stated in 3.1.10 of the DoA, the user interfaces for mission planning and supervision are created using a

game engine to accelerate the development. We chose to use the Unreal Engine1 to utilise the existing

expertise of the group. Unreal Engine is widely used for games and other 3D applications. It is highly

modifiable through a plugin system and supports virtual reality applications natively. It can be programmed

via C++ which makes it possible to include a wide variety of third-party libraries. In addition, it provides a

visual scripting language called Blueprints which are excellent for rapid prototyping.

In the project, communication between robots and other systems is handled by ROS (Robot Operating

System)2, which is not supported by Unreal Engine. While it would in theory possible to integrate a ROS

node directly into the application, either via a plugin or by modifying the engine itself, it does not seem

feasible due to the different build systems and difference in the application architecture. A more

maintainable solution to communicate with ROS is via the ROS bridge3. The ROS bridge provides a

mechanism to interact with ROS functionality via a JSON/BSON API that can be reached via TCP and

WebSockets. These standardised data formats and methods of transportation make it easy to

communicate with a ROS core from any type of application. A third-party plugin exists that enables

accessing and providing ROS topics and services4. However, the plugin has two limitations that made it

unfeasible for the use in the project. First, it is limited to the BSON data format which is incompatible with

other tools used in the project that require the JSON format and hard to debug in case of failures. Second,

its functionality is not accessible via Blueprints, the visual scripting language used in Unreal Engine, which

limits its usefulness for rapid prototyping.

To overcome these limitations, we developed a custom plugin for Unreal Engine called ROSBridge2Unreal5.

It aims to provide an easy-to-use API that enables communication with a ROS core and builds the

foundation for retrieving the data displayed in virtual reality applications. Figure 1 shows how the plugin

fits in the context of a virtual reality application. The plugin is open source and was released under the 3-

clause BSD license.

1 https://www.unrealengine.com
2 https://ros.org
3 http://wiki.ros.org/rosbridge_suite
4 https://github.com/code-iai/ROSIntegration
5 https://github.com/VRGroupRWTH/ROSBridge2Unreal

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 4 version 1.2 status: released

It provides functionality for subscribing and publishing topics as well as calling and offering services from

either C++ or Blueprints (see Figure 2). It supports the most commonly used message types as depicted in

Table 1 and provides simple mechanism to implement additional message types.

Figure 1 : Data exchange between ROS and Unreal Engine. The user interacts with the application developed in Unreal Engine via a head

mounted display (HMD). The application uses the developed plugin to communicate with the ROS bridge

that is connected to a ROS core instance.

Figure 2 : Subscribing to and publishing a ROS topic. The Blueprint code necessary to publish a new topic (top)

or subscribe to an existing one (bottom).

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 5 version 1.2 status: released

 Message Type Tested Use Case

std_msgs/Header ✘

std_msgs/String ✓

std_msgs/Float32 ✘

std_msgs/Float32MultiArray ✘

std_msgs/MultiArrayDimension ✘

std_msgs/MultiArrayLayout ✘

std_msgs/UInt8MultiArray ✘

geometry_msgs/Point* ✘

geometry_msgs/Pose* ✓

geometry_msgs/PoseStamped ✘

geometry_msgs/PoseWithCovariance* ✘

geometry_msgs/PoseWithCovarianceStamped ✓

geometry_msgs/Quaternion* ✘

geometry_msgs/Transform* ✘

geometry_msgs/TransformStamped ✘

geometry_msgs/Twist* ✘

geometry_msgs/TwistWithCovariance* ✘

geometry_msgs/Vector3* ✘

rosgraph_msgs/Clock ✘

nav_msgs/Path ✓

sensor_msgs/CompressedImage ✓

Table 1: Implemented message types. The right column indicates whether there is a tested use-case for this message type within the

project yet. A star next to the message indicates that the Blueprint version of the message will have reduced precision for floating point

numbers, as they only offer 32 bit floats compared to the 64 bit floats specified by ROS. Using the messages from C++ will not suffer from

this reduced precision.

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 6 version 1.2 status: released

2. VPN Acquisition
An unforeseen challenge in the project was the lack of physical meetings with project partners due to the

travel restrictions caused by the COVID-19 pandemic. Thus, all integration work must be performed

remotely. Establishing a remote connection between partners turned out to be difficult due to the

restricted network access caused by the firewalls of the individual partners. Opening the networks is a

time-consuming process and only solves the problem for specific partners. It is also not possible for every

partner as their network administration may not allow opening the network. Thus, a general solution to

this problem was needed. A virtual private network (VPN) that is accessible by all partners will solve the

problem without additional involvement of the party’s individual IT departments. We ordered a VPN with

high bandwidth for the use in the whole project for its remaining duration. It was set-up successfully and

invitation links as well as instructions on how to use it were sent to all partners. It is fully working and has

been already proven to allow collaborative work in multiple occasions.

3. Robot Monitoring
During the project several demonstrations were developed that show the ability to connect to different

types of robots to extract and visualize their data. The following sections will describe three different

demonstrations for each of different robot types that are used inside the project. All applications are

created with the Unreal Engine and communication is done via the ROSBridge2Unreal plugin described in

Section 1.

3.1. Drones
The first demonstration was closely developed together with UNI-KLU and is able to monitor and steer a

single drone in the real world from inside a virtual reality application. Upon launching the application, the

user is placed on top of a ship inside a virtual world which is shown to them via a head mounted display

(see Figure 3 top right).

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 7 version 1.2 status: released

The user is able to freely navigate inside the virtual world by moving physically. The user can create and

delete waypoints in the space to define a path for the drone. The waypoints are shown to the user with an

attached number next to them to indicate their order. Additionally, a line connecting the waypoints is

rendered with an animation indicating the direction of the path to give the user a more intuitive

understanding on how the drone will move through the world (see Figure 3, bottom right).

There is a button on top of the ship that can be pressed to send the path to the drone which will then start

to follow the path in the real world. The estimated position of the drone as well as the onboard camera

feed is visualized inside the application and can be monitored in real-time. The demonstration was shown

at the second integration week in January 2021 and was performed remotely. I.e., the drone was located

in a drone hall in Klagenfurt, Austria and monitoring and steering was performed from Aachen, Germany.

3.2. Crawler
A second demonstration was developed in close cooperation with CNRS to monitor the crawler movements

on a steel plate. The application shows a 3D model of the steel plate and the crawler (see Figure 4). The

position of the crawler in the application is synchronised with the estimated position of the crawler in the

real world. The path the crawler has already taken is indicated by a dotted green line. In this case, it

performed a sweeping pattern on the steel plate. The user can freely move around in the virtual world and

inspect the mission from an arbitrary viewpoint. This can be either done as a normal desktop application

by using keyboard and mouse input or via an HMD with more natural controls and increased spatial

awareness.

The demonstration shows the output of the depth sensor built into the crawler as a green point cloud in

front of it. Additionally, two camera views are embedded in the bottom left and right corners of the

application. The camera image on the left shows the experiment setup from an external view and was only

there for demonstration purposes. The camera image on the right shows the view from the crawler

Figure 3: Live demonstration of drone monitoring and steering using a VR application.

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 8 version 1.2 status: released

projected into the plane it is moving on. This can be used to create a colour texture for the ship by

projecting the received image onto the 3D model of the ship.

An algorithm for projecting images from crawlers or other robots onto arbitrary 3D models was

implemented within the Unreal Engine. It assumes that a 3D model exists with non-overlapping UV

coordinates and consists of two steps. First, the UV coordinates of the 3D model are rendered from the

point of view of the robot into a texture with the same dimensions as the image (see Figure 5 left). The

virtual camera has to be carefully adjusted to match the point of view of the real camera exactly. In a

second step, the UV coordinates in the resulting image can be used as a lookup table for every pixel of the

original image (see Figure 5 right). Carefully weighting the pixels before writing them to the texture

accomplishes the aggregation of all images during over time yielding a more complete texture for the

underlying model. Such methods can not only be used for colours but also for measurements such as the

thickness of the ship hull.

Figure 4 : Demonstration of crawler monitoring

Figure 5 : Projection and aggregation of images onto arbitrary 3D models

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 9 version 1.2 status: released

3.3. Underwater UAVs
Similar to the demonstration of the crawler monitoring, we developed a proof-of-concept application that

allows the monitoring of the Pioneer, underwater UAV manufactured by Blueye (BEYE). Thus, the

demonstration was closely developed in cooperation with BEYE. The demonstration shows a virtual world

containing a simple ship model and animated water that serve as a frame of reference (see Figure 6).

Monitoring the location of the UAV underneath the water surface is done by rendering a 3D model of the

Pioneer at its estimated position. Previous positions are indicated via a purple marker. In addition, a live

feed of the Pioneer’s built-in camera is attached to its model. For this demonstration, the robot was

manually steered. The data was recorded and later played back for the monitoring application.

4. User Interface Implementation
The long-term goal inside the project is to unify the different prototypes presented in Section 3 into a single

application used for monitoring and mission planning. An important aspect of the resulting application is a

convenient user interface that provides all necessary information in a clear way. To achieve this goal, we

closely collaborate with UT to design the interface in an iterative manner in regular meetings. The basis for

the design is the workflow analysis performed in T1.5. The user interface is designed as a desktop

application utilising a multi-view approach. An example of a single screen is shown in Figure 7.

The shown screen called Dashboard should give an overview of the current inspection process. The central

points of this screen are the two 3D views showing a 3D model of the ship which can be individually

controlled. The top shows the list of points of interest (POIs) in 3D space. POIs can be manually or

automatically placed and should indicate areas that need special attention as there are detected defects

or there have been in the past. The panel to its right contains more details about the selected POI. The

bottom view shows all the camera images of all currently deployed robots projected onto the ship. Similar

Figure 6: Demonstration of monitoring a Blueye Pioneer underwater UAV

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 10 version 1.2 status: released

to the POIs, a panel to its right contains more information about a selected robot. The two panels on the

left shows a preview of all camera images and a live view of all sensor data that is currently collected.

Arrows connect the data in the panels to the robots / POIs in the 3D view to enable the user to quickly

locate the area a specific dataset belongs to.

The user should then be able to switch to a virtual reality environment on demand for certain tasks that

benefit from a VR interface, e.g., in places where increased spatial awareness is crucial or a more natural

interaction with the virtual world is desirable. An example of such a task could be defining an area in the

virtual world that should be inspected by a given robot.

Alongside the design of the interface, we started implementing the concept using the Unreal Engine. The

current implementation of the previously described screen in shown in Figure 8. The current

implementation features the two independent 3D views of the ship with alongside the robots on the hull

marked by the blue icons. The live video feeds are displayed on the side and linked to the 3D view via a

dynamically rendered arrow. The sensor data feed is currently showing placeholder data as such data is

currently not collected from any of the robots.

Figure 7: User interface design concept

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 11 version 1.2 status: released

5. Evaluation of the suitability for field
deployment

An important aspect when designing and implementing user interfaces is the evaluation by actual users.

This includes which data is relevant to them during which parts of the process and how the user interacts

with the interface. In the context of virtual reality, it is especially important as many users are not familiar

with it.

We presented all demonstrators described in Section 3 as well as the user interface prototype shown in

Section 4 to the project partners, including potential end-users, during the virtual integration weeks. The

discussions afterwards gave valuable insights on their expectations and the importance of the individual

components.

A field visit to the Arsenal Do Alfeite (AASA) in Lisbon, Portugal was planned in cooperation with UT to

evaluate the user interface implementation as well as VR interaction techniques using hands on

approaches. However, the participation of RWTH had to be cancelled due to concerns regarding travelling

in the times of the COVID-19 pandemic, which led to the cancellation of the hands-on evaluation.

Further evaluation will however be done in the following integration weeks. A demonstration similar to the

one described in Section 3.1 is planned to be used in the integration week in May 2022 in Greece for an

on-site mission planning and monitoring demonstration. This will gain insights on how suitable such

interfaces are in the field. The in-person integration week in Norway planned in June 2022 can be used to

get hands-on feedback on the interface implementation by project partners as well.

Figure 8: Implementation status of the user interface design

BugWright2 Deliverable D7.2
Grant Agreement No. 871260 Dissemination level: PU

Page 12 version 1.2 status: released

6. Conclusion
This document showed the progress on robot supervision using VR interfaces in the project BURWRIGHT2.

We elaborated on how a connection between ROS and an application developed in Unreal Engine can be

established and presented the plugin we developed for this purpose. The proper functioning of the plugin

was demonstrated by developing monitoring applications for all robot types used within the project

(drones, crawlers and underwater AUVs). The demonstrations showed that we were able to connect to all

platforms and are able to supervise them during mission execution.

In addition, we presented the user interface design developed together with UT and showed the current

progress in implementing the design. Finally, we covered how the interfaces concepts were discussed with

potential end-users and how the demonstrations and the interface prototype will be evaluated in future

integration weeks that can take place physically.

