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ABBREVIATIONS 

UAV Unmanned Aerial Vehicle 

AUV Autonomous Underwater Vehicle 

MAV Micro Aerial Vehicle  

GNSS Global Navigation Satellite Systems 

UWB Ultra-Wide Band 

USBL Ultra-Short Baseline acoustic positioning system 

DVL Doppler velocity sensor  

VINS Visual-Inertial Navigation System  

LiDAR Light Detection And Ranging  
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I. Introduction  
This document aims at describing the localisation approaches developed for the different robotic platforms 

involved in the BUGWRIGHT2 framework: MAVs, AUVs and above- and underwater crawlers. Due to the 

particularities of both the platforms and the operating scenarios, this report is organised with one section 

per platform and operating area, where the localisation method is described followed by the respective 

performance assessments. 

 

 

 

 

 

 

 

 

 

 

The overall goal of the robot localisation in this project is to have all mobile systems working in a common 

reference frame in which, at a later stage, swarm algorithms, data acquisition, data visualisation, and user 

interaction can be carried out. A natural choice of the global reference system is the one of the global 

navigation satellite systems (GNSS). That being said, several operating scenarios in BUGWRIGHT2 impede 

the use of direct GNSS signals. Thus, the reference frame alignment across different domains and platforms 

requires special attention. A network of (meshed) distance measuring ultra-wide band (UWB) modules is 

considered suitable sensors to span a GNSS independent reference frame across the different aerial 

platforms and operation domains. Thus, research and development efforts were specifically focusing on 

the use, initialisation, characterisation, and alignment of such sensors. Figure 1 depicts schematically the 

relevant robotic systems, sensors, and reference frames which are used to align the navigation of all 

platforms in the GNSS (or UWB) reference frame. The interplay between those elements can be 

summarized as follows. 

For the MAVs, their (sporadic) GNSS reception is used to align their inertial aided vision, depth, and UWB 

based navigation systems with the global frame. Their localisation result is further used to globally 

reference UWB anchor-positions on the pier and on the ship during the operation process initialisation 

phase in an autonomous fashion (see section II.1.ii.d).This removes the requirement of the end-users to 

manually measure the placed UWB anchors in the environment and on the ship hull. Once the UWB 

anchors are initialised their readings add to the localisation of the MAV. If no GNSS signal is available, the 

MAVs initialise the UWB modules to a common origin against which the remaining sensors and frames are 

aligned following the above described procedure. 

Figure 1: Schematic depiction of the different robot platforms, their operating scenarios and their reference frames. 
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The (potentially) globally referenced UWB anchors are further used as reference for the magnetic crawlers. 

Inherently this leads to a crawler navigation in the GNSS frame. Wheel odometry, inclinometer, plate based 

information, and UWB readings are then fused to obtain localisation information (see Section I.IV.2). For 

the underwater crawler, UWB measurements will not be available. Instead USBL measurements are 

incorporated. 

For the AUVs, their reference frame is anchored in the USBL. In turn, the USBL has either GNSS reception 

or/and is incorporated in the overall UWB reference frame and has a defined heading such that this offset 

can be propagated to the AUVs, rendering their navigation aligned with the overall GNSS/UWB reference 

frame. Since the USBL signal is often interrupted and inaccurate (similar to the GNSS reception issues on 

the MAVs) the AUVs feature additional sensors for localisation encompassing a Doppler velocity sensor 

(DVL), depth sensor, and IMU (see Section III). 

Multi-robot interaction and information will be included in the future in WP6 (mainly Task 6.3) to further 

improve the localisation and task execution performance through collaborative structures. Merging the 

localisation of the single robots with multi-robot tasks and missions will be further elaborated in WP6. 

The most complex localisation framework is required for the MAV to ensure uninterrupted and precise 

information for high-rate control. Therefore, three main types of environmental information is fused: 

geometric structure (depth based), visual information (image based), and data from additional 

infrastructure (GNSS/UWB). 

A framework (VINS-Eval) ensures rigorous statistical testing of the otherwise complex to assess image-

based methods. Also, specific to the image-based methods, since metric information (depth) is not directly 

available, is an in-flight re-initialisation including other sensing modalities. The inclusion of salient 

information (i.e., lines) usually dominant in man environments further adds robustness to the image-based 

methods. The image, depth, and UWB/GNSS information is fused in the overall UIB cascaded EKF 

framework for MAV control. Different depth-based methods (RGB-D and Lidar) provide additional 

redundancy. A subset (MaRS) of the MAV localisation cascade is re-used with different platform specific 

sensors for the AUV localisation.  

 

Figure 2: Overview of the contributions to Task 4.1. Localisation elements connecting scientific papers  

and challenges in the project to be addressed for localisation of the MAV, AUV, and crawler robots.  
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For the crawlers, the infrastructure-based information (UWB) is first required to be aligned with the other 

vehicle’s reference frames (frame alignment and initialisation marked with red arrows). Then, UWB 

readings and wheel odometry are constrained to the crawler motion on the hull, seen as a 2D manifold 

embedded in 3D. Different manifold-constrained methods were tested to assess estimator complexity, 

versatility, consistency, and robustness. Acoustic guided waves-based localisation is included in this 

deliverable for completeness; however, further details are presented in D3.1. 

II. Localisation approach for the aerial 
platforms 

In the following, we describe and evaluate the localisation approaches on motion estimation and 

localisation developed and integrated into the two BUGWRIGHT2 MAVs. Due to the unavailability of the 

final MAV platform (DJI M100) as well as due to Covid and the resulting limitations in travel, 

synchronisation, and integration possibilities, the partners working on the approaches for the MAV 

localisation split the module testing elements to two different platforms. At UIB the Matrice 100 was used 

for UWB- and depth-based localisation techniques while UNI-KLU developed and tested the platform-

agnostic UWB and image-based approaches TWINS Science UAV. Initial sensors and platform specifications 

are listed in Deliverable 1.2 “Software and Hardware Modification Specification” Section 3.  

Providing uninterrupted localisation information to the aerial platforms is arguably the most challenging 

part of the robot localisation tasks in the project. Since the MAVs are inherently unstable platform, a high-

precision and continuous provision of the localisation is crucial to maintain the platform airborne. In 

contrast, crawlers and even the AUVs can stop their actuators for algorithm and sensor re-initialisation 

without endangering the mission, platform, or their surroundings. 

 

1. Image-based motion estimation and localisation 

i. Sensor Modalities 
To ensure uninterrupted localisation data to the MAVs, a multi-sensor approach was chosen. UNI-KLU 

focused on using image, UWB range sensing, magnetometer, and GNSS data for the localisation estimation 

with the former two sensors being the main information providers. Magnetometer and GNSS, if available 

in sufficient quality, are used to align the vision and UWB frames to a global coordinate system. The 

platform including the sensors used is depicted in Figure 3. Additional sensors like barometer or laser 

rangefinder are included for safety purposes in a resilient control scheme (see deliverable 5.1). 
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Figure 3: TWINS Science MAV platform used by UNI-KLU for image based multi-sensor localisation 

Sensor Specifications Rate Usage 

PX4 10DoF IMU 3DoF gyro, accelerometer, 

and magnetometer, plus 

barometer 

200Hz Main modelling 

(propagation) sensor 

Matrixvision MLC-200wG WVGA monochrome 20Hz Main navigation sensor 

Lidar-lite point laser 10m range 10Hz For contingency 

measures 

RTK GNSS receiver Up to cm-precision, 16cm and 

worse with bad/no RTK fix 

7Hz For global navigation 

frame alignment 

Decawave UWB 50m range, decimetre 

precision 

10Hz (varying 

with number 

of anchors) 

For navigation frame 

alignment across 

robots 

OdroidXU4 / PI4 

compute board 

ARM CPU (Exynos5422 / 

Broadcom BCM2711) 

 On-board computing 

While initial intrinsic and extrinsic calibration is performed, all these states (including camera intrinsic and 

time delay) are estimated online in the estimator framework. 

ii. Localisation Method Description 

In connection with the surrogate platform TWINS Science, a series of fundamental platform-independent 

localisation elements were developed and tested. In a subsequent step, these elements were integrated in 

the DJI M100 platform which is targeted to be the overall demonstration platform for MAV localisation and 

also on the AUV platform for improve state estimation (see Section III). The localisation elements are:  

1. Improved place recognition and loop closure for vision-based approaches using points and lines in 

man-made structure. [Company2020a] 

2. Simulation framework to test, validate, and compare different state estimation approaches (with 

a focus on image-based methods) with statistical relevance [Fornasier2021a] 

3. Mid-air image-based initialisation to mitigate vision based failures in-flight while bridging such 

sensor failures with redundant sensor information and control strategies (cf. deliverable 5.1) 

[Scheiber2021a]  
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4. UWB frame initialisation for local frame alignment across different robot platform types and for 

simpler alignment with GNSS if available. [Blueml2021a] 

5. Modular multi-modal sensor fusion framework with fast and scalable sensor handling despite 

signal delay and rate differences. [Brommer2020a, Allak2022a] 

Improved place recognition and loop closure (adapted from [Company2020a]): II.1.ii.a 

Visual SLAM approaches typically depend on loop closure detection to correct the in consistencies that 

may arise during the map and camera trajectory calculations, typically making use of point features for 

detecting and closing the existing loops. However, in low-textured scenarios as e.g., on the ship hull and 

on the deck along containers, it is difficult to find enough point features and, hence, the performance of 

these solutions drops drastically. An alternative for human-made scenarios, due to their structural 

regularity, is the use of geometrical cues such as straight segments, frequently present within these 

environments.  

Under this context, UIB introduced with [Company2020a] an appearance-based loop closure detection 

method that integrates lines and points (see Figure 12). Adopting the idea of incremental Bag-of-Binary-

Words (BoW) schemes, separate BoW models for each feature are built and used to retrieve previously 

seen images using a late fusion strategy. Additionally, a simple but effective mechanism, based on the 

concept of island, groups similar images close in time to reduce the image candidate search effort. A final 

step validates geometrically the loop candidates by incorporating the detected lines by means of a process 

comprising a line feature matching stage, followed by a robust spatial verification stage, now combining 

both lines and points. The approach compares well with several state-of-the-art solutions for a number of 

datasets involving different environmental conditions. 

 

Simulation framework (adapted from [Fornasier2021a]): 

In the research community, there exist several different Visual-Inertial Navigation System (VINS) algorithms 

to localise mobile robots in a 3D environment. Comparison methods, rigor, depth, and repeatability of 

comparisons have a large spread and an unbiased evaluation framework to evaluate the best methods for 

the project did not exist. Further, with existing simulators and photo-realistic frameworks that could be 

extended for image-based performance analysis, the user is not able to easily test the sensitivity of the 

algorithms under examination with respect to specific environmental conditions and sensor specifications. 

 

Figure 4: (left) a human-made environment including a high number of lines and a low number of points  

(right). An outdoor environment presenting the opposite situation. 

 

  

Figure 5: Robustness overall score and Breaking Point (BP) of the VINS algorithms under examination with increasing 

difficulty levels for each of the considered environmental and/or sensor parameters. The BP per parameter is visually 

defined as the level next to the corner of the polygon.
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Due to the high complexity of image-based localisation methods, tests often include unwillingly many 

polluting effects falsifying the analysis and interpretations.  

In addition, edge cases and corresponding failure modes often remain undiscovered due to the limited 

breadth of the test sequences. In this project, such edge cases are, however, of utmost importance to 

detect, in order to enable a later transition to industry and their applications. The unified evaluation 

framework developed in [Fornasier2021a] allows, in a fully automated fashion, a reproducible analysis of 

different VINS methods with respect to specific environmental and sensor parameters. The analyses per 

parameter are done over a multitude of test sets to obtain both statistically valid results and an average 

over other, potentially polluting effects with respect to the one parameter under test to mitigate biased 

interpretations. The automated performance results per method over all tested parameters are then 

summarized in unified radar charts (see Figure 21 as an example) for a fair comparison across authors and 

institutions.  

Considering the output of this analysis and the required compute power, OpenVINS was chosen as base 

method for the image-based approach in this project. The open-sourced VINSEval framework is made 

available via https://github.com/aau-cns/vins_eval. A demonstration video of VINSEval is made available 

on https://youtu.be/KuA3nibxWok. 

Robustness overall score and Breaking Point (BP) of the VINS algorithms under examination with increasing 

difficulty levels for each of the considered environmental and/or sensor parameters. The BP per parameter 

is visually defined as the level next to the corner of the polygon. 

 

Mid-air image-based initialisation (adapted from [Scheiber2021a]): 

Even though the selected OpenVINS approach and several other state-of-the-art VINS show a remarkable 

robustness also in unprepared environments, the approaches fail at a rate that is still intolerable for 

industrial applications. A failure can have dramatic consequences. To prevent this, VINS must be able to re-

initialise in mid-air, either during a free fall or on a constant velocity trajectory after attitude control has 

been re-established.  

  

Figure 13: Robustness overall score and Breaking Point (BP) of the VINS algorithms. 

 

  

Figure 14: Proposed mid-air initialization concept for ad-hoc VINS initialization

  

Figure 15: Robustness overall score and Breaking Point (BP) of the VINS algorithms under examination with increasing 

difficulty levels for each of the considered environmental and/or sensor parameters. The BP per parameter is visually 

defined as the level next to the corner of the polygon. 

 

  

https://github.com/aau-cns/vins_eval
https://youtu.be/KuA3nibxWok
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However, for both of these trajectory behaviours typically occurring after VINS failure, the visual scale 

cannot be observed because of the absence of acceleration change. [Scheiber2021a] proposes to use a 

small and lightweight laser-range finder (LRF) and a scene facet model to initialise vision-based navigation 

at the right scale under any motion condition and over any scene structure. This new range constraint is 

integrated into a visual-inertial bundle-adjustment initialiser. The approach is evaluated in simulation, 

including robustness to various parameters, and we demonstrated on real data how this approach can 

address mid-air state estimation failure in real-time. Sophisticated failure detection and mitigation 

strategies for the control behaviour are detailed in deliverable 5.1. 

 

Figure 30 shows the proposed ad-hoc initialisation concept: camera images are used to derive the initial 

camera poses using the Fundamental or Homography matrix method. Then, the scene structure from 

motion (SfM) is derived using a perspective-n-point (PnP) approach. After, this structure is scaled metrically 

with the range measurements received by the LRF. To reduce the impact of measurement noise a range-

visual bundle-adjustment (R-BA) is performed. Finally, the range-visual poses are aligned with the pre-

integrated IMU measurements, to derive the globally aligned states. 

With the above modules, the core frame of image-based navigation and (re-)initialisation is available. The 

following modules extend this core capability towards using additional sensor modalities for increased 

resilience and towards unifying all robots in a common (local) UWB and, if available, GNSS frame. 

 

UWB frame initialisation (adapted from [Blueml2021a]): 

For UWB based navigation an accurate initialisation of the anchors in a reference coordinate system is 

crucial for precise subsequent UWB-inertial based or multi-sensor pose estimation. In [Blueml2021a] a 

strategy is developed based on information theory to initialise such UWB anchors using raw distance 

measurements from tag to anchor(s) and aerial vehicle poses. The vehicle poses can originate either from 

GNSS signals or image-based navigation. In the former case, the UWB mesh and all robots navigating in it 

are globally aligned. In the latter case, the mesh is referenced against an arbitrarily chosen origin and 

heading (gravity aligned). This still allows to coordinate all robots in a unified frame through UWB mesh 

coordinates. As soon as GNSS information is injected by one of the robots, the entire mesh can be, if 

necessary, aligned globally. The initialisation process includes a linear distance-dependent bias term and 

an offset in order to achieve unprecedented accuracy in the 3D position estimates of the anchors (error 

reduction by a factor of about 3.5 compared to state-of-the-art approaches) without the need of prior 

  

Figure 22: Proposed mid-air initialisation concept for ad-hoc VINS initialisation 

 

  

Figure 23: Schematic presentation of the extended OpenVINS image based localisation method merged with the UWB 

based navigation and initialization.

  

Figure 24: Proposed mid-air initialization concept for ad-hoc VINS initialization 
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knowledge. After an initial coarse position triangulation of the anchors using random vehicle positions, a 

bounding volume is created in the vicinity of the roughly estimated anchor position. In this volume, points 

are calculated which provide the maximal triangulation related information based on the Fisher 

Information Matrix (FIM). Using these information theoretic optimal points, a fine triangulation is done 

including bias term estimation. The approach is evaluated in simulations with realistic sensor noise as well 

as with real world experiments. A closed loop controlled flight is also performed using the UWB anchor 

positions based on this initialisation strategy (see Figure 42).  

This initialisation approach is integrated as an extended version of the OpenVINS method described and 

evaluated above, such that the MAV can seamlessly initialise and use UWB and image data for resilient 

navigation and control (see deliverable 5.1). The estimated overall pose including uncertainty can further 

be forwarded to an overarching modular estimation module 

(e.g. MaRS described below or to UIB as described in Section 

II.3). Figure 38 depicts the schematic connections of the used 

sensors with the UWB initialisation module and our extended 

version of the VIO framework OpenVINS.  

Figure 52 shows a closed loop initialisation process where the 

MAV initially only navigates using camera images (VIO) and 

automatically initialises the UWB anchors in the same 

navigation frame. Then, once the UWB initial position is 

deemed to be sufficiently accurate based on statistical 

verification, their information is included in the multi-modal 

image-UWB-inertial based localisation. 

 

Figure 43: The proposed initialisation procedure (left) first using random triangulation points (green x) for 

coarse anchor initialisation (green triangle) and subsequently for the FIM optimisation to find optimal 

triangulation points (blue x) within a volume for position refinement (blue triangle). Also, the consideration 

of bias terms has an important positive performance impact (blue versus black triangle). Ground truth is 

  

Figure 39: Proposed initialisation procedure (left). (Right) trajectory flown with the MAV 

 

  

  

Figure 31: Schematic presentation of the 

extended OpenVINS image based localisation 

method merged with the UWB based navigation 

and initialisation. 

 

  

Figure 32: The proposed initialization procedure 

(left) first using random triangulation points 

(green x) for coarse anchor initialization (green 
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the red triangle. Right is the trajectory flown with the MAV fusing the UWB anchors initialised with the 

proposed approach and inertial data (red: estimated, blue: ground).  

 

Modular multi-modal sensor fusion framework (adapted from Allak2022a and [Brommer2020a]): II.1.ii.e 

In order to allow a unified localisation platform, a Modular and Robust Sensor-fusion (MaRS) Framework 

was developed [Brommer2020a]. This framework not only serves as unifying estimator on the UNI-KLU 

MAV for localisation and control testing and verification (see also deliverable 5.1) but was also integrated 

on the AUV by NTNU for improved localisation and more versatile sensor usage. State-of-the-art recursive 

sensor filtering frameworks allow the fusion of multiple sensors only tailored to a specific problem but do 

not allow a dynamic and efficient introduction of additional sensors during runtime: an important feature 

to enable long-term missions in dynamic environments and to render a localisation approach versatile for 

unified localisation across heterogeneous platforms. In contrast, the developed MaRS is a modular sensor-

fusion framework that enables the addition and removal of sensors at runtime. These sensors could be not 

a priori known to the system. The framework handles the complexity of system and sensor initialization, 

measurement updates, and switching of asynchronous multi-rate sensor information with sensor self-

calibration in a truly modular and generic design.  

In addition, the framework can handle delayed measurements, out-of-sequence updates, and can monitor 

sensor health. The introduced true modularity is based on covariance segmentation to allow the isolated 

(i.e., modular) processing of propagation and updates on a per-sensor basis. MaRS can maintain crucial 

properties of the overall state covariance. Naive implementation of such a modularization would invalidate 

the covariance matrix. The framework acts as a central localisation unit on the UNI-KLU MAV and the NTNU 

AUV. In [Brommer2020a] it is thoroughly evaluated for a precision landing scenario switching between 

combinations of GNSS, barometer, and vision measurements. Tests are performed in simulation and in 

real-world scenarios to show the validity of the introduced method. The MaRS technology is patented in 

Austria (AT-523734) and open sourced on GitHub (https://github.com/aau-cns/mars_lib). 

 

 

 

 

Figure 44: Closed loop controlled image based flight for a UWB initialisation test referencing the UWB anchors 

 in the visual navigation frame (no GNSS).  

 

 

Figure 45: State error for the position and orientation of the core state in MaRS in an adaptive multi-modal cross-

domain flight. This scenario was performed with 20 datasets to gain a statistically significant result for the truly modular 

approach. The initial increase of the error in z-position is caused by vision drift due to the takeoff maneuver.

 

https://github.com/aau-cns/mars_lib
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Figure 9 depicts a scenario, where MaRS was used for a camera supported take-off and only then GPS and 

barometer were added as additional navigation sensors. During the main mission, the camera support was 

stopped and only re-activated (with self-calibration by MaRS) for the landing procedure. Orange is the 

flown trajectory, grey stars the dynamically determined waypoints, blue initial and red refined anchor pose 

estimates. 

MaRS (and any other sensor fusion system merging multiple potentially delayed sensor signals through a 

statistical approach) is challenging for resource constrained platforms. For statistical consistency, it is 

required to keep an appropriate history, apply the correcting signal at the given time stamp in the past, 

and re-apply all information received until the present time. This re-calculation becomes impractical (the 

bottleneck being the re-propagation of the covariance matrices for estimator consistency) for platforms 

with multiple sensors/states and low compute power such as the MAVs and AUVs in the project (the 

tethered crawlers may provide certain off-board computation with fast and reliable data connection). In 

[Allak2022a] an approach for consistent covariance pre-integration was developed to allow delayed sensor 

signals to be incorporated in a statistically consistent fashion with very low complexity. Insights from the 

scattering theory were used to mimic the re-calculation process as a medium through which we can 

propagate waves (covariance information in this case) in single operation steps. 

The modularity and self-calibration capability of MaRS directly allows to globally reference the navigation 

frame if GNSS signals are available. If no GNSS signal is available MaRS synchronises all sensor modalities 

to the initially observed, fixed navigation frame. In this project this is the UWB reference frame (since the 

camera navigation frame is drifting in position and yaw). Figure 10 is a state error for the position and 

orientation of the core state in MaRS in an adaptive multi-modal cross-domain flight. This scenario was 

performed with 20 datasets to gain a statistically significant result for the truly modular approach. The 

initial increase of the error in z-position is caused by vision drift due to the takeoff maneuver. 

 

Figure 53: State error for the position and orientation of the core state in MaRS in  

an adaptive multi-modal cross-domain flight.  

 

 

Figure 54: Closed loop AR flight test in the UNI-KLU drone hall. Right: real flight of the drone in the drone hall. Left top: 

simulated ship in VINS-Eval. Left bottom-left: simulated camera image based on the real drone position transformed to 

the simulated ship and image used by the VIO on-board the real drone. Left bottom-right: Estimated trajectory by the 

state-estimator using real IMU and simulated camera data.
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iii. Experiments and Integration 

The above described building blocks consisting of the extended OpenVINS framework, UWB initialisation 

method and inclusion in the overarching MaRS localisation module has been extensively tested and 

prepared for the following efforts on multi-agent extensions in the remainder of the project. Apart of the 

inclusion in a resilient autonomy and control module (see deliverable 5.1) a large data set was collected to 

test indoor, outdoor and transition missions. The set contains the following data: 

 

The dataset was captured at the UNI-KLU campus (sectors 1-3) and within the UNI-KLU drone hall  

(sector 4). 
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Due to Covid constraints, no real flights on a real ship could be performed. That said, a sophisticated 

virtualisation framework for the drones was created. Using the above described VINS-Eval 

[Fornasier2021a] and virtual ship modelled therein, real flying drones in the UNI-KLU drone hall were 

“equipped with AR goggles”: The real drone was using the real IMU for a real flight in the real drone hall. 

However, the images for the camera based navigation were not obtained through the real camera. Instead, 

the tracking system in the drone hall provided the current pose of the MAV to the virtual, coordinate 

aligned ship and VINS-Eval created online the corresponding image (see Figure 80). This proved to be a 

powerful tool not only to bridge covid related integration issues but also to emulate a variety of different 

environments and conditions therein -- leveraging all the benefits of VINSEval combined with real drone 

flights. 

As a synchronised effort, apart from merging the above described framework with the UIB framework on 

the M100 demonstration platform, comparable flight test as shown in Figure 80 was performed using a 

simulated mock-up that is currently being built for real tests (see Figure 88, the camera based approach 

handles well the fairly homogeneous texture and challenging geometry). 

 

 

 

 

 

 

 

 

 

Figure 73: Closed loop AR flight test in the UNI-KLU drone hall. Right: real flight of the drone in the drone hall. Left top: 

simulated ship in VINS-Eval. Left bottom-left: simulated camera image based on the real drone position transformed to the 

simulated ship and image used by the VIO on-board the real drone. Left bottom-right: Estimated trajectory by the state-

estimator using real IMU and simulated camera data. 

 

 

Figure 74: Closed loop AR flight test in the UNI-KLU drone hall. Right: real flight of the drone in the drone hall. Left top: 

simulated ship in VINS-Eval. Left bottom-left: simulated camera image based on the real drone position transformed to 

the simulated ship and image used by the VIO on-board the real drone. Left bottom-right: Estimated trajectory by the 

state-estimator using real IMU and simulated camera data. 

 

  

Figure 81: Similar setup as depicted in Figure 80 but with simulated and artificially textured mock-up system 

currently built in the project for initial real tests. 
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2. Laser-based motion estimation and localisation 

i. Sensor Modalities 
The previously described multi-sensor approach focusing on fusing UWB, GNSS, and images can tackle a 

variety of real-world situations. However, GNSS shadowing, UWB multipath issues, and visually 

homogeneous textures quickly deteriorate the performance of the overall localisation when only taking 

these sensor modalities into account. Thus, UIB focused on depth-based state estimation to include the 

geometrical aspects of the environment. Formulating this element in a loosely coupled framework allows 

to not only add further sensors in a stand-alone fashion but to seamlessly include the previously described 

camera and UWB focused approach. This architecture also allowed UIB and UNI-KLU to develop the 

different modules of the overall MAV state estimation framework largely independent without the need 

(and the possibility due to Covid) of many physical integration meetings. For the depth-based part of the 

MAV localisation, the following table summarizes the sensors, rates, and their usage. 

Sensor Specifications Rate Usage 

DJI 6DoF IMU 3DoF gyro, accelerometer, and 

magnetometer, plus barometer 

50Hz Main modelling 

(propagation) sensor 

Ouster Laser OS1 

scanner 

120m range, 1.3M points per 

second 

20Hz revolution Main navigation sensor 

Depth camera 

Realsense 

D435i/D455 

3m (6m for the D455) range, HD 

resolution 

30Hz (90Hz for the 

D455) 

Main navigation sensor 

RTK GNSS receiver Up to cm-precision, 16cm and 

worse with bad, no RTK fix 

7Hz For global navigation 

frame alignment 

Decawave UWB 50m range, decimetre precision 10Hz (varying with 

number of anchors) 

For navigation frame 

alignment across 

robots 

The output of the localisation framework is used as input in the DJI SDK setting the current (and desired) 

position. 

ii. Localisation Method Description 

Specifically for the MAV localisation on the demonstration platform DJI M100, two depth-based concepts 

were pursued: depth-based state estimation using depth cameras and using laser scanners. Both methods 

were extended with GNSS and UWB support to best merge with the previously described image-based 

methods. The elements on depth-based localisation consists of: 

1. RGB-D camera-based state estimation using environmental properties for improved localisation, 

place recognition, and loop closure. [Company2022a] 

2. Lidar based state estimation using adaptive local mapping. [GarciaFidalgo2021a] 

3. Extension to use initialise d UWB anchors in a pose computation approach that is resilient to multi-

path issues due to improved triangulation techniques. [Bonnin2020a] 
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RGB-D camera-based state estimation (adapted from [Company2022a]): II.2.ii.a 

Visual odometry algorithms tend to degrade when facing low-textured scenes —from e.g., human-made 

environments such as ship hulls or containers on cargo decks—, where it is often difficult to find a sufficient 

number of point features. Alternative geometrical visual cues, such as lines, which can often be found 

within these scenarios, can become particularly useful. Moreover, these scenarios typically present 

structural regularities, such as parallelism or orthogonality, and hold the Manhattan World assumption. 

Under these premises, [Company2022a] introduces an RGB-D-based visual odometry approach that 

combines both point and line features and leverages, if possible, those structural regularities and the 

Manhattan axes of the scene. Within this approach, these structural constraints are initially used to 

estimate accurately the 3D position of the extracted lines. These constraints are also combined next with 

the estimated Manhattan axes and the reprojection errors of points and lines to refine the camera pose by 

means of local map optimisation. Such a combination enables to operate even in the absence of the 

aforementioned constraints, allowing the method to work for a wider variety of scenarios. Furthermore, a 

novel multi-view Manhattan axes estimation procedure that mainly relies online features is developed. The 

approach dubbed MSC-VO is assessed using several public datasets, outperforming other state-of-the-art 

solutions, and comparing favourably even with some SLAM methods. 

 

Lidar based state estimation (adapted from [GarciaFidalgo2021a]): II.2.ii.b 

Light Detection and Ranging (LiDAR) technology is known as a robust alternative for self-localisation and 

mapping. These approaches typically state ego-motion estimation as a non-linear optimisation problem 

dependent on the correspondences established between the current point cloud and a map, whatever its 

scope, local or global. [GarciaFidalgo2021a] proposes a novel LiDAR-only odometry and mapping approach 

(dubbed LiODOM) for pose estimation and map-building, based on minimizing a loss function derived from 

a set of weighted point-to-line correspondences with a local map abstracted from the set of available point 

clouds. It places a particular emphasis on map representation given its relevance for quick data association. 

 

Figure 89: Example of map produced by LiODOM (KITTI 05 sequence), comprising an un-optimised global map generated 

during navigation (in white) and a local map (in red) that is retrieved according to the position of the vehicle, to be used 

for next pose estimation. 
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To efficiently represent the environment, a data structure that, combined with a hashing scheme, allows 

for fast access to any section of the map is developed. LiODOM is validated by means of a set of 

experiments on public datasets (see Figure 96), for which it compares favourably against other solutions. 

Its performance on-board an aerial platform is also reported in the corresponding publication 

[GarciaFidalgo2021a]. 

 

UWB based localisation [adapted from Bonnin2020a]: II.2.ii.c 

Following the self-initialisation approach presented above in [Blueml2021a] UWB anchors can readily be 

used for localisation. Compared to [Blueml2021a] where such information is used rather rudimentarily in 

a tightly coupled approach, the triangulation based approach in [Bonnin2020a] show some resiliency 

against multi-path issues. This is particularly important since the project’s environments can comprise 

metallic structures or other elements which can negatively affect the signal transmission and hence the 

accuracy of UWB-based position estimations. Regarding this fact, [Bonnin2020a] proposes a novel method 

based on point-to-sphere ICP (Iterative Closest Point) to determine the 3D position of a UWB tag. In order 

to improve the results in noise-prone environments, the method first selects the anchors’ subset which 

provides the position estimate with least uncertainty (i.e., largest agreement) in the approach. 

Furthermore, a previous stage to filter the anchor-tag distances is used as input of the ICP stage. Also, the 

addition of a final step based on non-linear Kalman Filtering to improve the position estimates is 

considered. Performance results for several configurations of our approach are reported in the 

experimental results in the publication [Bonnin2020a], including a comparison with the performance of 

other position-estimation algorithms based on trilateration. The experimental evaluation under laboratory 

conditions and inside the cargo hold of a vessel (i.e., a noise-prone scenario, see Figure 104) proves the 

good performance of the ICP-based algorithm, as well as the effects induced by the prior and posterior 

filtering stages. 

 

 

Figure 97: Position estimations provided by the different methods for a rectangular trajectory performed inside the vessel 

hold: ground truth (GT), proposed ICP based method (ICP), off-the-shelve triangulation method (POSZYX) and other 

variants (T_*). Clearly the proposed method strongly improves the estimation in such difficult scenario making it a strong 

candidate for the project’s estimation framework. 
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iii. Experiments and Integration 

The above-described building blocks on depth based localisation were rigorously tested on several public 

datasets as mentioned above and also integrated on the DJI platform to perform closed loop flight tests. 

Several test runs were performed at the UIB campus and using a Ro-Ro vessel data set gathered with the 

M100 MAV with the real sensor modalities. Additional details can be found in the corresponding 

publications. Figure 112 and Figure 120 depict the experiments on the UIB campus regarding the LiDAR 

based approaches. 

 

The RGB-D approach (MSC-VO based SLAM) was tested on the Ro-Ro vessel dataset (see Figure 128). 

Besides the 6DoF trajectory, a point cloud was aggregated, and a mesh was generated.  

 

Figure 105: Testing of the multi-sensor state estimation localisation & mapping functionalities  

of the depth-oriented state estimation at the UIB campus: 3D laser-based odometer LiODOM and  

3D laser-based SLAM = LiODOM + loop closure detection. 

 

 

 

Figure 106: Testing of the multi-sensor state estimation localisation & mapping functionalities of the depth-oriented state 

estimation at the UIB campus: 3D laser-based odometer LiODOM and 3D laser-based SLAM = LiODOM + loop closure 

detection. 

 

 

 

 

Figure 113: LiODOM-based SLAM test in a UIB corridor. LiODOM is running onboard the MAV while 

loop closing and global map optimization is running on the base station. 
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Besides the tests on the vessel data set for the UWB based localisation mentioned previously, the approach 

was also implemented on a ground robot for live tests in a project relevant setup with UWB anchors placed 

vertically on a wall. Different estimator types were implemented (EKF, IEKF, AEKF, etc.) and compared 

against each other. Also, different anchor placements to test the influence of the mesh geometry to the 

localisation precision. A sample test setup is shown in Figure 136. 

 

 

 

 

Figure 121: Experiment for the RGB-D based MSC-VO depth-based state estimation on the Ro-Ro vessel dataset. Top left: 

scene image. Top right: aggregated point cloud for subsequent scene meshing. Bottom left: presented MSC-VO approach 

using points and lines. Bottom right: estimated scene features and 6DoF pose. 

 

 

Figure 122: Experiment for the RGB-D based MSC-VO depth based state estimation on the Ro-Ro vessel dataset. Top left: 

scene image. Top right: aggregated point cloud for subsequent scene meshing. Bottom left: presented MSC-VO approach 

using points and lines. Bottom right: estimated scene features and 6DoF pose. 

 

 

 

Figure 129: Sample test setup for the UWB based localisation method at the UIB laboratory. 10 anchors were placed  

on a vertical plane and at different ranges in x and z direction, but same direction at 0m and 2.46m.  

The RMSE for this setup and an EKF implementation (see right plot) is about 9cm. 
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3. Combination of approaches 

After separate development, evaluation, and testing the image (led by UNI-KLU) and depth based (led by 

UIB) approaches were merged together. This was done using UIB’s loosely coupled overall cascaded EKF 

based estimator framework (see schematic in Figure 

152): IMU propagation and depth based odometry 

information (LiDAR, RGB-D odometry, and altimeter) 

are fused in a local EKF module. A global EKF module 

fuses GNSS data (if available) and globally referenced 

UWB modules as well as SLAM information. Similarly 

to the local EKF module, UNI-KLU’s image based 

framework feeds into the global EKF as an external, 

virtual sensor. The output is a resilient platform pose 

for control. Several tests were already performed with 

data gathered with the real M100 platform and 

sensors as well as with the hardware in the loop with 

simulated data. Figure 144 shows the results of these 

tests. Real live tests in front of the real mock-up are 

planned in the April’22 and June’22 integration weeks. 

This merged framework marks the milestone of MAV 

localisation for a single platform in the project’s 

relevant settings in view of platform type, sensors, 

and, to some extent modulo real-world mock-up, 

environment.   

  

Figure 145: UIB’s cascaded EKF based estimator 

framework using a local EKF for IMU propagation, 

altimeter reading, and LiDAR odometry. A global EKF 

module includes GNSS signals, referenced UWB anchors, 

and SLAM information. Additionally, it inputs the UNI-

KLU's image based localisation and UWB initialization 

module as virtual sensor. 

 

  

Figure 146: UIB’s cascaded EKF based estimator 

framework using a local EKF for IMU propagation, 

altimeter reading, and lidar odometry. A global EKF 

module includes GNSS signals, referenced UWB anchors, 

and SLAM information. Additionally it inputs the UNI-

KLU's image based localisation and UWB initialization 

module as virtual sensor.  

 

  

    

     

Figure 137: Trajectory flown using the UNI-KLU image based localisation in the UIB cascaded EKF framework. Top left: 

Position in [x, y, z]. Top right: top down view of the trajectory. Bottom left: trajectory visualized in RViz. Bottom right: 

live image of the challenging (reflections and low texture) environment. 
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III. Localisation approach for the autonomous 
underwater vehicle 

In the following, we describe and evaluate the localisation approaches on motion estimation and 

localisation developed and integrated into the BUGWRIGHT2 AUV. Following the state estimation methods 

in full 3D space for the MAV, the AUV can directly adapt the core methods. This applies particularly to the 

modular multi-sensor fusion method MaRS developed in [Brommer2020a] described in Section  II.1.ii.e. 

MaRS is highly modular and versatile such that the sensing modalities from the MAV were easily replaced 

by the ones of the AUV. Moreover, similarly to the GNSS signal for the MAV, the USBL (with its GNSS sensor 

and defined heading) provides means to globally align the AUV navigation frame whenever a USBL signal 

is available. Even though those signals are very sparse and noisy (in a way similar to often distorted GNSS 

signals), MaRS will include the provided information in a statistically best possible fashion for AUV 

navigation frame alignment. Other sensors as well as the fusion results are detailed in the following 

sections.  

1. Sensor Modalities 

The AUV setup features the two IMUs with an integrated inclinometer algorithm. This algorithm averages 

the readings of the two IMUs and provides an absolute roll and pitch and a relative (to the start pose) yaw 

reading. Both IMUs also provide 3DoF gyro, accelerometer, and magnetometer readings. In addition, a 

doppler velocity sensor DVL is mounted that provides 3DoF body velocity and the distance to ground. The 

sensor also features its own IMU with an inclinometer and an algorithm that integrates the body velocity 

rotated into the inertial frame to a 3D position relative to its start position. The mentioned USBL device 

features a GNSS receiver and allows a fix heading correction such that its Cartesian readings can be aligned 

with a local GNSS frame. Through this information and using MaRS that can adequately incorporate this 

information in a self-calibrating fashion, the UAV can be globally referenced in the same frame as the 

remaining robotic platforms of the project. Figure 160 depict the sensor setup on the AUV and the table 

below lists the sensors. 

 

 

Figure 153: AUV setup with the sensors and their frames as used in MaRS. 
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Sensor Specifications Rate Usage 

2x IMU MPU-9250 3DoF gyro, accelerometer, and 

magnetometer 

200Hz Main modelling sensor 

(averaged propagation) 

SeaTrac USBL 

X115/X110 

1km range 10Hz Global referencing 

WaterLinked DVL A50 Body velocity, distance to 

ground (50m), attitude, and 

integrated position 

8Hz Attitude and body 

velocity used for IMU 

integration correction. 

Integrated position as 

verification. 

MS5837-30BA Pressure 

sensor 

Up to 30 bar 10Hz Depth below water 

surface 

Rasberry PI 3 

equivalent 

System on Chip  On-board computing 

 

2. Localisation Method Description 
 

The navigation method is identical to the MaRS approach presented in Section II.1.ii.e based on 

[Brommer2020a]. For the AUV, MaRS is initialised with the local position. Initial roll and pitch are 

determined using the averaged gravity vector from the IMU. The heading is initialised using the 

magnetometer. Note that this can be disturbed and has a declination with respect to the GNSS absolute 

heading. However, this initialisation is still well in the convergence basin such that the AUV’s global attitude 

quickly converges with first movements and USBL readings upon mission start. The same is true for the 

initial roll and pitch which may be polluted by IMU biases and initially not correspond to the true values. 

During operation, IMU based pose propagation is executed. The integration errors are corrected by the 

DVL body velocity measurements, the DVL attitude measurement, and the depth sensor pressure readings. 

Sporadically, if MaRS deems the USBL readings as trustworthy, 3D USBL readings are incorporated. With 

time and motion, the latter ensures global alignment of the AUV with the remaining robots. This is the 

important benefit of using MaRS instead of directly using the integrated position by the DVL manufacturer. 

In the latter case, the (statistically correct) inclusion of global information or other additional sensing 

modalities would be increasingly complex with more additional sensors. MaRS modularly handles sensor 

modality additions in a statistically correct fashion, such that statistical tests can be performed on the 

quality of any sensor signal. 

 

3. Experiments and Integration 

Several tests have been conducted in a fjord area and in a pool for ground truthing. Generally, ground 

truthing for the AUV is a difficult task. Even though USBL was used in the pool area and in the fjord datasets, 

this type of sensor has a low rate and is, even under well behaving conditions, very noisy. For the estimation 

verification, in addition to the USBL data, the integrated DVL velocity as a relative position was used. This 

is an output the manufacturer provides and is deemed, apart from the inherent drift due to integration, as 

reliable in a relative reference frame during short mission periods. 
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For the experiments, MaRS was implemented in the embedded CPU on the AUV and ran live during the 

data gathering process. This allows a verification on the run-time performance of MaRS as well as post 

processing using the gathered raw and verification data. Figure 168 depicts a run in the fjord using USBL, 

pressure sensor, DVL body velocity, and DVL attitude in MaRS compared to the raw USBL measurements 

and the integrated DVL velocity. For the short run, the drift of the integrated DVL velocity is negligible and 

shows, thus, similar performance to MaRS. That being said, the integrated velocity was manually aligned 

with the global reference frame in a post processing step while MaRS performed this calibration online 

automatically. It is also clearly visible that the USBL information is highly noisy. Nevertheless, MaRS is able 

to leverage the best of all information providing a smooth, accurate, yet globally aligned pose estimation 

of the AUV. 

With this framework, we are now able to localise a single AUV robot in the global reference frame along all 

other robots in the project. This can be leveraged in upcoming steps regarding multi-agent methods. 

 

 

 

 

 

 

 

  

  

Figure 161: AUV localisation test in the fjord using USBL, DVL velocity and attitude, and IMU readings. Even though in 

seemingly good conditions (without interferences from harbour structures and ships), the USBL (orange) readings are 

highly noise. However, MaRS (blue) is able to leverage the velocity information from DVL for a much smoother pose 

estimate while using the sparse, noise prone USBL readings for maintaining global reference in position and heading. 

 

  

Figure 162: AUV localisation test in the fjord using USBL, DVL velocity and attitude, and IMU readings. Even though in 

seemingly good conditions (without interferences from harbor structures and ships) the USBL (orange) readings are 

highly noise. However, MaRS (blue) is able to leverage the velocity information from DVL for a much smoother pose 

estimate while using the sparse, noise prone USBL readings for maintaining global reference in position and heading. 
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IV. Localisation approach for the crawlers 
In the following, we describe and evaluate the localisation approaches on motion estimation and 

localisation developed and integrated into the two BUGWRIGHT2 crawler types. This task is strongly 

connected to the Task 3.1 on simultaneous localisation and geometry inference on a metal plate. And the 

corresponding deliverable 3.1. Thus, we focus on the localisation elements not including the metal plate 

geometry inference and only give a brief overview of those efforts. While the metal plate localisation 

methods are valid for the above- and below-water platforms, other localisation methods are only valid for 

one or the other. In the following sections we focus in particular on UWB and LiDAR based localisation for 

the above-water platforms while USBL based localisation methods are used for the below-water. 

 

1. Sensor Modalities 

Apart from the transducer used in WP3 (see deliverable D3.1), several sensors are used to perceive the 

environment for path planning, obstacle avoidance, and localisation. The table below summarises the 

different sensors. Instead of using the IMU as a core propagation sensor as it is done for the MAV and the 

AUV, the crawlers use the wheel odometry as primary motion model. The IMU, due to the low excitation 

during the crawler motion only provides minimal information and may best be used as an inclinometer. 

For local positioning 3D point clouds from a LiDAR, stereo or IFM sensor is used. Global positioning is 

achieved through UWB anchors.  

 

Sensor Specifications Rate Usage 

Wheel encoder mm-precision 50Hz Main modelling 

(propagation sensor) 

MPU-9250 9DoF IMU 3DoF gyro, accelerometer, 

and magnetometer 

100Hz Inclinometer 

Ouster Laser OS1-16 

scanner 

120m range, 1.3M points per 

second 

20Hz revolution Former navigation 

sensor for testing 

IFM IP69 3D camera 

O3D305 

8m range 20Hz Former navigation 

sensor for testing 

Robosense bPearl 

IP69 laser 3D 

30m range, 1.1M points per 

second 

20Hz 

revolution 

Former navigation 

sensor for testing 

LiVOX MID-70 3D 

laser 

90m range 100k points per 

second 

Main navigation sensor 

Depth camera 

Realsense D435i 

3m range, HD resolution 30Hz Images for colouring 

the point clouds 

Decawave UWB 15m range, decimetre 

precision 

<10Hz (varying 

with number of 

anchors) 

For navigation frame 

alignment across 

robots 

 

 



BugWright2               Deliverable D4.1 
Grant Agreement No. 871260      Dissemination level: PU 

Page 26 version 1 status: released 

2. Localisation Method Description 
Providing accurate and consistent localisation information to the crawlers is probably the most challenging 

compared to the MAV and AUV. Whereas the challenging task for the MAV is to provide uninterrupted 

localisation, the crawlers move very slow, can easily rest upon non-nominal state detection, and have very 

accurate wheel odometry making this sensor a viable source of information. Exteroceptive sensors 

improving this information are, however, complex to integrate due to the reflective surface and the 

challenging perspective the crawlers have thereof (very close to the structure). Furthermore, the surface 

may be curved and thus occlude global positioning information e.g., from UWB anchors mounted on the 

surface. Thus, the efforts on providing accurate crawler localisation focus on the following aspects: 

1. Manifold constrained consistent estimation using UWB anchors and IMU propagation in an 

invariant Kalman filter formulation. [Starbuck2021a] 

2. Mesh-constrained particle filter-based estimation using UWB anchors. IMU, and the crawler’s 

odometry. [Schroepfer2022a] 

3. FastSLAM based localisation on a metal plate leveraging reflections of ultrasonic guided waves in 

a particle filter setup. [Ouabi2021a] 

Manifold constrained invariant Kalman filter (adapted from [Starbuck2021a]): 

The developed Manifold Invariant Extended Kalman Filter is a novel approach for better consistency and 

accuracy in state estimation on manifolds such as tanks and ship hulls. The robustness of this filter allows 

for techniques with high noise potential like ultra-wideband localisation to be used for a wider variety of 

applications like autonomous metal structure inspection. The filter is derived, and its performance is 

evaluated by testing it on two different manifolds: a cylindrical one and a bivariate b-spline representation 

of a real vessel surface, showing its flexibility to being used on different types of surfaces. Its comparison 

with a standard EKF that uses virtual, noise-free measurements as manifold constraints proves that it 

outperforms standard approaches in consistency and accuracy (see Figure 176). Further, an experiment 

using the real magnetic crawler robot on the curved metal surface with ultra-wideband localisation shows 

that the proposed approach is viable in the real-world application of autonomous metal structure 

inspection. 

  

Figure 169: Manifold constrained invariant extended Kalman filter (M-IEKF) tested in simulation on  

a cylindrical shape and on a metal surface compared to a naively constrained EKF (M-EKF). 
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Mesh-constrained particle filter based estimation (adapted from [Schroepfer2022a]): 

The invariant (and equivariant) extended Kalman filter requires 

certain geometries of the group on which the state vector and 

measurements are defined. This geometry is not directly 

satisfied when taking raw distance measurements from UWB 

into account nor when taking IMU acceleration or gyro biases 

into the state vector. Thus, for more versatile use, a mesh 

constrained estimator was developed using a particle filter 

approach. This field-tested mesh constrained particle filter for 

mobile robots is capable of estimating poses with 6DoF in real-

time due to low particle count requirements. In this filter, 

particles are constrained by a mesh surface approximating the 

surface the robot is travelling on. By constraining the particles, 

the dimensions of the effective work space the robot is 

operating in is reduced. In other words, the robot is effectively 

lying on a manifold (locally) with 3DoF embedded in SE(3). 

Importantly, by reducing this effective workspace, significantly 

improved accuracy is achieved with low particle density when 

compared to a dense standard particle filter. This particle 

reduction also allows to represent particles with 6DoF in real-

time on a mobile robot embedded computer. Further, by 

constraining particles to the mesh and avoiding the use of an 

Extended Kalman Filter, high levels of robustness to lost or 

dropped anchor measurements can be demonstrated. 

 

FastSLAM based localisation on a metal plate (adapted from [Ouabi2021a]): 

This localisation method is more detailed described in deliverable 3.1 and mentioned here for 

completeness. A FastSLAM approach for a robotic system inspecting structures made of large metal plates 

has been developed. By taking advantage of the reflections of ultrasonic guided waves on the plate 

boundaries, it is possible to recover, with enough precision, both the plate shape and the robot trajectory. 

Contrary to previous work, this approach considers the dispersive nature of guided waves in metal plates. 

This is leveraged to construct beam-forming maps from which we solve the mapping problem through plate 

edges estimation for every particle, in a FastSLAM fashion. It is demonstrated, with real acoustic 

measurements obtained on different metal plates, that such a framework achieves more accurate results, 

while the complexity of the algorithm is sensibly reduced (see Figure 192). 

 

Figure 177: Crawler localisation on a 3D mesh 

of a metal tank using UWB, IMU, and crawler 

odometry. The chosen approach is a mesh 

constrained particle filter. 
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3. Experiments and Integration 

Several experiments were conducted on mock-up setups using a bended metallic plate up to a real-world 

test on a large metallic tank. The crawler localisation is mainly based on UWB in these experiments. Thus, 

and since the UWB anchors can be initialised in a reference frame common to all robotic platforms (see 

Section Error! Reference source not found.), the crawlers inherently operate in the same unified reference f

rame. Additional frame alignment refinement can be investigated in the upcoming efforts in the project on 

multi-agent methods.  

For the above-mentioned manifold constrained localisation, a mock-up with a bended metal plate was set 

up and tested with a real crawler and UWB measurements. Ground truth was obtained by an external laser 

scanner (see Figure 200). The developed invariant manifold constrained approach was tested against a 

naively constrained regular extended Kalman filter (see Figure 210).  

  

Figure 185: Trajectories estimated by all the particles (black lines), dead-reckoning trajectories (dash magenta lines) and 

map retrieved by the most likely particle (green lines) during Steps 50 and 108 for a lawn-mower path on a plate 1. The 

true outline of the plate and true sensor positions correspond to the blue rectangle and blue dot respectively. 

 

  

Figure 186: Trajectories estimated by all the particles (black lines), dead-reckoning trajectories (dash magenta lines) and 

map retrieved by the most likely particle (green lines) during Steps 50 and 108 for a lawn-mower path on a plate 1. The 

true outline of the plate and true sensor positions correspond to the blue rectangle and blue dot respectively. 

 

  

Figure 187: Trajectories estimated by all the particles (black lines), dead-reckoning trajectories (dash magenta lines) and 

map retrieved by the most likely particle (green lines) during Steps 50 and 108 for a lawn-mower path on a plate 1. The 

true outline of the plate and true sensor positions correspond to the blue rectangle and blue dot respectively. 

 

  

 

Figure 193: Magnetic crawler robot (green arrow) on a curved metal surface with ultra-wideband localisation  

(red circles) and laser (yellow arrow) to track the robot for ground truth. 
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A larger integration and testing effort was done on a real tank structure. Ground truth was set up via laser 

scanner and several UWB anchors were placed to enable the IMU, odometry, and UWB based localisation 

aid of the above-described particle filter method (see Figure 208).  

Using the UWB (or USBL for the underwater crawler) inherently allows the crawlers to estimate their pose 

in the same reference frame as the remainder of the robots. Thus, the developed approaches enable a 

solid single-robot localisation that can further be used in the upcoming multi-robot tasks in the project. 

  

  

Figure 201: Crawler on a real metal tank in a real environment (left). The crawler was joystick-guided along the wall while 

the particle filter based estimation approach estimated its 6DoF (top right as red line). The ground truth as well as the 

mesh was captured by a laser scanner (bottom right). 

 

  

  

Figure 209: Localisation result on the mock-up plate showing the comparison of the naively constrained extended 

Kalman filter (MC-EKF) and the novel approach based on manifold mapping and invariant formulation (M-IEKF).  

Right: Schematic representation of the UWB anchor distribution and the measurements. 

 

  

Figure 210: Localisation result on the mock-up plate showing the comparison of the naively constrained extended 

Kalman filter (MC-EKF) and the novel approach based on manifold mapping and invariant formulation (M-IEKF). Right: 

Schematic representation of the UWB anchor distribution and the measurements. 
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V. Conclusions 
Overall, the consortium reached a state where the robotic platforms can be localised in a common 

reference frame as single agents. Starting from the MAV with probably the highest requirements on 

localisation quality both in precision but also in robustness, the consortium developed image based, depth 

based, and UWB based methods for precise MAV localisation via a cascaded EKF framework. Within this 

effort, a UWB anchor initialisation has also been developed to initialise their positions in the respective 

reference frame that serves as a common coordinate system across all robot platforms in the project. The 

depth and image-based approaches for the MAV have been successfully merged and demonstrated with 

real platforms and data. 

In particular the modular multi-sensor fusion approach used in the image-based approach for the MAV 

could directly be extended to act as the localisation backbone for the AUV. Using USBL, DVL, and pressure 

sensors for the IMU integration correction (instead of GNSS, camera, and UWB as for the MAV) the 

framework could directly be re-used to estimate the MAV pose in the UWB/USBL reference frame. 

For the crawlers, due to their constraints on the manifold, different, manifold-constrained estimators were 

developed. An invariant extended Kalman filter approach proved to be highly consistent yet limited in 

application with complex sensors models. A particle-filter-based approach proved then to be accurate and 

very light in cost with good performance on a large real-world experiment on a tank structure. Again, 

relying on UWB (or USBL underwater) measurements, and with the MAV based initialisation routine for 

the UWBs, the crawlers can be localised in a unified navigation frame. 

These results mark an important milestone rendering the global localisation of all robot platforms possible. 

This will be leveraged in upcoming effort in multi-agent aspects. We expect that multi-agent information 

will continue to improve the localisation accuracy of the single robot through collaborative state estimation 

methods. 
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Centralized-Equivalent Pairwise Estimation with Asynchronous
Communication Constraints for two Robots

Eren Allak1, Axel Barrau2, Roland Jung3, and Stephan Weiss1

Abstract— Collaboratively estimating the state of two robots
under communication constraints is challenging regarding com-
putational complexity and statistical optimality. Previous work
only achieves practical solutions by either disregarding parts
of the measurements or imposing a communication overhead,
being non-optimal or not entirely distributed, respectively.

In this work, we present a centralized-equivalent but dis-
tributed approach for pairwise state estimation where two agents
only communicate when they meet. Our approach utilizes
elements from the wave scattering theory for efficiently and con-
sistently summarizing (pre-compute) past estimator information
(i.e., state evolution and uncertainty) between encounters of
two agents. This summarized information is then used in a
joint correction step taking all past information of each agent
statistically correct into account.

This novel approach enables us to distribute the pre-
computations of both state evolution and uncertainties on
the agents and reconstruct the centralized-equivalent system
estimate with very few computations once the agents meet
again while still applying all measurements from both agents
on both estimates upon encounter. We compare our approach
on a real-world dataset against a state of the art collaborative
state estimation approach.

I. INTRODUCTION

Pairwise estimating states between two agents is, espe-
cially in the field of autonomously navigating systems, key
to achieve precise and robust localization in challenging
environments. Features like sensor sharing (e.g., propagating
global information from a GNSS reception on one agent
to the other) and the resulting redundancy or instantaneous
capturing of a dynamic scene via shared pose information
and the resulting variable baseline-stereo setup [1][2] are
only some of the benefits that directly result from an ac-
curate pairwise state estimation across two agents. As a
specific real-world example, the variable and ad-hoc baseline
formation finds application in e.g., landslide or avalanche
monitoring, where two aerial agents can form a flexible,
sufficiently large baseline on-demand and use their cameras
for joint photogrammetric reconstruction of the dynamic
events.

Strictly speaking, only a centralized fusion of all the
information of both agents at any time a reading is processed
would adequately consider cross-correlations of states on and

1Eren Allak and Stephan Weiss are with the Department of Smart
Systems Technologies in the Control of Networked Systems Group,
Universität Klagenfurt, 9020 Klagenfurt, Austria {eren.allak,
stephan.weiss}@ieee.org
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3Roland Jung is with the Karl Popper School on Networked Au-
tonomous Aerial Vehicles, University of Klagenfurt, Austria (e-mail:
roland.jung@ieee.org)

between the state maximizing consistency and accuracy of
the overall system’s state estimate. This is generally compu-
tationally not tractable for small mobile systems with limited
computing power. Current approaches either approximate
inter-agent correlations or assume them to be unknown.
Other approaches that maintain correlations between agents,
on the other hand, need to communicate when global pose
information becomes available to keep the belief equivalent
to the centralized fusion.

Our approach for a centralized-equivalent decoupling
scheme utilizing elements of the scattering theory efficiently
solves estimation problems with pairwise communication
constraints. We show that this theory, typically used in
physics, can also be used for pairwise state estimation,
requiring communication only on meet-ups, i.e., when one
agent is able to sense the other and locate itself relatively to
it.

The analogy between waves traveling through media and
estimation problems was partially covered in the previous
work [3]. However, the focus was only on interpreting
measurements as sections of a scattering medium, leading to
remarkably fast covariance pre-integration by concatenating
those sections into one medium. A key aspect of this work
is to complete the previous theory by looking at the waves
that travel through this medium, leading to reusable pre-
computations of the mean values of the state variables.
While the covariances and closed-loop transfer functions are
described by the scattering matrix describing the medium,
it turns out that the estimate means are the waves travel-
ing through this medium forward in time. Moreover, the
wave traveling backward in time is at least as important as
the forward wave, since it carries information from future
measurements to estimates of past states. This process in
estimation is also known as smoothing and is related to the
adjoint variable, which is, in fact, the backward wave and
will be further described in III-B.

We show in this work that both, the covariances and the
means can be computed with just a few steps using Scattering
Theory. All the advantages like changing of initial conditions
and concatenating measurements also carry over to the mean
computations. The main limitation is that scattering theory
was developed for linear systems. Therefore, we present
methods to apply it on non-linear systems that paves the way
for efficient distributed estimation in a multitude of realistic
estimation problems.

Our contributions are:
• Extending previous work on linear systems [4] to cover

efficient mean and covariance pre-computations for non-



linear systems by the use of scattering theory (III-C).
• Centralized-equivalent estimates under asynchronous

communication constraints for pairwise distributed state
estimation on computationally constrained vehicles
(IV).

• Comparison of the proposed method to a centralized
implementation using real data (V).

II. RELATED WORK

Before introducing the related work, the terms central and
centralized-equivalent are explained. Centralized estimation
refers to an estimation approach, where all measurements
of each agent are processed in one entity leading to the
statistically best possible beliefs. This approach requires
constant communication between the central entity and all
the agents. If the communication overhead is intractable,
the next best estimation scheme is the centralized-equivalent
estimation. Compared to the centralized version, the commu-
nication is reduced in some way. However, once the agents
can communicate, a belief can be computed equivalent to
the centralized version, i.e., a centralized-equivalent belief
is achieved. In the past decades, different filter-based ap-
proaches for collective multiagent localization have been
presented. Previous approaches can be roughly classified as
(i) centralized-equivalent (e.g., [5], [6]), (ii) approximated
(e.g., [7], [8]), (iii) covariance intersection based methods for
unknown correlations (e.g., [9], [10]), (iv) optimizing corre-
lations (e.g., [11]), and (v) graph-based methods (e.g., [12]).

The general challenge in all these approaches remains
to decouple (statistically) the individual agents to relax the
communication constraints, while at the same time maintain
and account for coupling/cross-correlations between agents
to achieve statistically optimal and consistent estimates.
Current approaches apply different decoupling strategies at
the cost of estimator consistency.

In i) [6], Kia et al. proposed a centralized-equivalent de-
coupled approach based on passing messages with correction
terms after joint or global observations to the rest of the
agents in a network.

The approximated decoupled filter approaches (ii) are a
reasonable choice for real-world applications in terms of
scalability regarding the number of involved agents, commu-
nication constraints, and accuracy with respect to centralized
equivalent approaches, while not being consistent. Luft et
al.’s approach presented in [7] requires communication only
when agents meet (O(1)) and the maintenance effort for the
interdependencies scales with O(N) for N agents.

At high sensor rates, as it is the case for systems using an
IMU as propagation sensor (in aided inertial systems the rate
is typically between 100—1kHz), the maintenance effort was
identified as a limitation for large swarms. Therefore, Jung
and Weiss proposed in [8] the use of common correction
buffers, allowing the maintenance cost to scale with O(1)
with increasing number of known agents.

In contrast to these desired properties of [7], [8], one
major disadvantage remains: directly or indirectly correlated
agents that are not participating in the current observation

between two other agents do inherit the information of this
observation. Meaning that their beliefs experience no correc-
tion despite their (theoretical) coupling via cross correlation
terms. The loss of accuracy due to this approximation is
often favored over the reduced computational complexity in
practice.

As for the works [9], [10] of iii), unknown correlations
are only an issue if the inter-agent correlation terms are
not maintained although the agents interacted in the past.
Otherwise, inter-agent correlations can be assumed to be
zero if they never met. Similarly in iv) [11], the inter-
agent correlations are not maintained and must be inferred
via optimization and consistency considerations. They can
therefore not be completely recovered.

In our previous work, we used Scattering Theory (ST)
[13], [14], [4] to perform covariance pre-integration in a
single-agent multi-sensor setup [15] and further developed
our findings [3] for single agent invariant filtering approaches
[16], [17], [18] to enable statistically consistent covariance
pre-integration.

This work achieves centralized-equivalent accuracy and
consistency for a pair of agents in contrast to ii), iii) and
iv), while still needing to communicate less than i) (we do
not need to communicate global information immediately).
Our approach takes past private observations of the other
agent into account upon a joint observation. A measurement
concerning only the local state of an agent, it is called
private, and if it also concerns other agents’ states, it is called
a joint measurement.

We achieve centralized-equivalence in two steps by em-
ploying efficient pre-computations through the use of the
scattering theory distributed on each agent as they move and
measure independently. We require communication between
the two agents to exchange pre-computations only at meet-
ups when joint updates are performed (like, e.g., [7], [8]).
In doing so, we are not concerned with one of the major
disadvantages for centralized-equivalent approaches as those
require either extensive bookkeeping or information distri-
bution across the entire swarm of agents, e.g., [5], [6].

The rest of the paper is organized as follows: We first
develop the necessary tools for a single agent in Sec. III.
The covariance pre-computations derived in the form of
scattering matrices are discussed in III-A, as they are needed
for the mean pre-computations. In III-B, we derive source
vectors used as pre-computation elements for state mean
values. The novel extension to non-linear systems is shown
in III-C. Then, in Sec. IV, we bring the elements of the
single agents together to a pairwise estimation approach for
the mean (IV-A) and covariance (IV-B) computation. The
approach is evaluated on a dataset for differential wheel
robots in Sec. V and in Sec. VI we draw the conclusions.

III. SINGLE AGENT PRE-COMPUTATIONS WITH
SCATTERING THEORY

The core aspect of this paper is to consider all private
observations two agents may have had between their previous
and current encounter in a statistically correct fashion. The



method should be equivalent to a fully centralized approach,
but with reduced compute and communication requirements.
The centralized version updates all beliefs of all agents
whenever an agent receives an observation. Our approach
is to continuously process all observations of the agents
separately (distributed) as they move to pre-computation
terms, and then exchange them with the other agent when
they meet. Using these exchanged pre-computations and then
applying the joint measurement is statistically equivalent to a
centralized approach. For our EKF setup, the above involves
precomputations for the covariance and the mean.

A. Covariance Pre-Computations as Scattering Matrices

A non-linear system with additive white Gaussian noise
nu,ny , state x and measurement y in discrete time is given
by

xi+1 = f (xi,ui) + nu,i, nu ∼ N (0,Σu), (1)
yi = h (xi) + ny,i, ny ∼ N (0,Σy). (2)

A quick recapitulation of the previous work on covariance
pre-integration [15] will introduce the basic concepts in scat-
tering theory for covariance pre-computations, which will be
relevant for this work. We show how many measurements are
combined into one element, such that all measurements can
be later applied in one step, for example to update with de-
layed measurements or to perform pairwise estimation. The
star product [14] Eq. (4) is used to combine measurements
for propagation and updates by their respective generators
Eq. (5) and Eq. (6) with F and H being the Jacobian of the
state dynamics and measurements, respectively. This leads to
a scattering matrix Eq. (7), i.e., single agent covariance pre-
computations, enabling the computation of covariances P
considering all measurements for a given initial covariance,
shown in Eq. (8). The subscripts t and m indicate time
propagation and measurement.

S = S1 ⋆ S2 =

[
a b
c d

]
⋆

[
A B
C D

]
(3)

=

[
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]
(4)
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S0
i,N = Mi ⋆ Mi+1 ⋆ . . . ⋆ MN−1 (7)

Si,N =

[
I Pi,0

0 I

]
⋆ S0

i,N =

[
ΦN,i PN,i

−ON,i ΦT
N,i

]
(8)

Si,N (later used for smoothed estimates) differs from S0
i,N

in that the initial conditions are already applied. The first
equation Eq. (9) describes the closed loop transfer function
that is required mainly to compute cross-covariances from
innovations to states. Eq. (10) is the covariance of the
estimation error after all measurements are applied. Eq. (11)
is called the observability Gramian and is also at the same
time the covariance of the adjoint variable, that is important
to smoothing and will be introduced in Sec. III-B.

ΦN,i = Φp(N, i) = Fp,N−1Fp,N−2 . . .Fp,i (9)
PN,i = PN|N−1 (10)

ON,i =

N−1∑
j=i

ΦT
p (j, i)H

T
j R

−1
e,jHjΦp(j, i) (11)

Φp(i, i) = I Fp,i = Fi −Kp,iHi (12)

Kp,i = FiPiH
T
i R

−1
e,i Re,i = HiPiH

T
i +Σy (13)

B. Mean Pre-Computations as Source Vectors

The scattering theory has two integral components: the
scattering medium and the waves that travel through the
medium. In this section, the waves are connected to their
counterparts in state estimation as the estimate means x̂ for
the forward-in-time wave and the adjoint variable λ for the
backward-in-time wave. The adjoint variable is required in
the context of smoothing as described in the following. So
far, the scattering medium was only characterized by the
scattering matrix, which was enough for covariance pre-
integration, but for the mean pre-computations (i.e., the
waves) also the source vectors of the scattering medium
are required. The adjoint variable is a part of the source
vector, and thus can be pre-computed. Also, the following
derivations are a preparation for the derivations in IV,
since our approach is based on smoothing and uses adjoint
variables as well.

Given a linear system with additive white noise Eq. (14),
that is not related to Eq. (1-2), also given initial conditions
{x0,P0} and all measurements y0 . . .yN from time 0 to N ,
there are three different linear least mean squared (l.l.m.s.)
estimates for the state xi at time i: the filtered estimate x̂i|i
which is considering y0 . . .yi, the predicted estimate x̂i|i−1

which is considering y0 . . .yi−1, and the smoothed estimate
x̂i|N which is considering all measurements y0 . . .yN .

xi+1 = Fixi +Biui + nu,i yi = Hixi + ny,i (14)

The estimates x̂i|i−1 and x̂i|i can be computed with a
Kalman Filter, that is also providing the innovations ei =
yi−Hix̂i|i−1 during the filtering process. These innovations
can now be used to define the smoothed estimate and the
adjoint variable λi|N by the innovations approach:

x̂i|N =

N∑
j=0

⟨xi, ej⟩⟨ej , ej⟩−1ej (15)

= x̂i|i−1 +

N∑
j=i

⟨xi, ej⟩⟨ej , ej⟩−1ej

= x̂i|i−1 +Pi|i−1

N∑
j=i

Φp(j, i)
THT

j R
−1
e,jej

= x̂i|i−1 +Pi|i−1λi|N (16)

The covariance is denoted ⟨·, ·⟩ and ⟨xi, ej⟩ =
Pi|i−1Φp(j, i)

THT
j is just presented without derivation.

When measurements build up the scattering medium, they
are attached one by one to the medium with their generator
and the star product, as in defined Eq. (4-7). In the process,



every measurement also defines the source vectors of the
scattering sections. In Eq. (17) the source vector for a prop-
agation measurement mt,i and for an update measurement
mm,i are shown. To combine source vectors of scattering
sections {S1, s1} and {S2, s2} to one medium the dot-sum
is used, as defined in Eq. (18). The scattering matrices are
defined as in Eq. (3).

mt,i =

[
Biui

0

]
mm,i =

[
0

HT
i Σ

−1
y,iyi

]
(17)

s = s1 • s2 =

[
r+

r−

]
•
[
R+

R−

]
=

[
R+

r−

]
+

([
I b
0 d

]
⋆

[
A 0
C I

])
∗
[
r+

R−

]
=

[
R+

r−

]
+

[
A(I − bC)−1(r+ + bR−)
d(I − Cb)−1(R− + Cr+)

]
(18)

Finally, many measurements (i.e., their source vectors)
mi . . .mN−1 are combined, as in Eq. (19). These are the
single agent mean pre-computations for linear systems. After
adding the initial conditions, as in Eq. (20), the resulting
source vector sN,i solves two estimation problems simul-
taneously: The estimation at time N as x̂N |N−1 and the
adjoint variable for smoothing at time i as λi|N , given all
measurements yi . . . yN and initial conditions {xi,0,Pi,0}.

s0N,i = mi •mi+1 . . . •mN−1 (19)

sb =

[
xi,0

0

]
sN,i = sb • s0N,i =

[
x̂N|N−1

λi|N

]
(20)

C. Extension to Non-Linear Systems

The Extended Kalman Filter (EKF) is a special case of
the linearized Kalman Filter, where the linearization points
are taken as the last state estimates. On the same linearized
system that the EKF is applied, also the mean computations
of the scattering theory can be applied. This only requires
certain pre-computations (Eq. (7) and Eq. (19)) to be done,
while the EKF is applied to the measurements for the first
time. This results in one step re-computations of the EKF
means and adjoint variable for new initial conditions (Eq.
(25)). In the following derivations, all measurements are
processed once with an EKF and therefore all linearization
points x̂lin

i|i and x̂lin
i|i−1 are available. Linearizing is done at

a propagated or filtered estimate, x̂lin
i = x̂lin

i|i−1 or x̂lin
i =

x̂lin
i|i, respectively. The linear system for the EKF at the

linearization point x̂lin
i at time i is described by Eq. (21-22):

f (xi,ui) ≈ f
(
x̂lin
i ,ui

)
+

∂f(x, ·)
∂x x=x̂lin

i

(xi − x̂lin
i )

xi+1 ≈ x̂lin
i+1 + Fi∆xi

∆xi+1 = xi+1 − x̂lin
i+1 ≈ Fi∆xi (21)

h (xi, ·) ≈ h
(
x̂lin
i

)
+

∂h(x)

∂x x=x̂lin
i

(xi − x̂lin
i )

yi ≈ h
(
x̂lin
i

)
+Hi∆xi

yi − h
(
x̂lin
i

)
≈ Hi∆xi (22)

An update to the linearization point is then described as

x̂lin
i|i = x̂lin

i|i−1 +Ki(yi − h(x̂lin
i|i−1)) = x̂lin

i|i−1 + δxi

xi −∆xi|i = xi −∆xi|i−1 + δxi

∆xi|i = ∆xi|i−1 − δxi (23)

On the linearized system described by Eq. (21-23) the
mean computations of the scattering theory, i.e. Eq. (19),
can now be applied with slight adaptations to the update
measurement source vector mm,i:

mm,i =

[
−δxi

HT
i Σ

−1
y,i(yi − h(x̂lin

i ))

]
(24)

Given new initial conditions {xnew
i,0 ,P

new
i,0 } with ∆xi,0 =

xnew
i,0 − xi,0 the smoothed estimates as well as EKF mean

estimates can be computed in one step:

sb =

[
∆xi,0

0

]
sN,i = sb • s0N,i =

[
∆xN

∆λi|N

]
(25)

x̂new
N|N = x̂lin

N|N +∆xN (for N as update) (26)

x̂new
N|N−1 = x̂lin

N|N−1 +∆xN (for N as propagation) (27)
x̂new
i|N = x̂new

i,0 +Pnew
i,0∆λi|N (28)

IV. CENTRALIZED-EQUIVALENT PAIRWISE STATE
ESTIMATION WITH SCATTERING THEORY

In the previous section, we described how the two agents
generate pre-computations for means and covariances de-
scribed by Eq.(19) and Eq. (7), respectively. Assume agents
A and B are initially correlated at time i and then every agent
performs a standard EKF to update its state, assume xA, with
private measurements, say yA

i . . .yA
N , but at the same time

also builds up the scattering matrix SA and the source vectors
sA from all its private measurements. Once agent A meets
agent B again, they share {SA, sA} and {SB , sB} with each
other and update their own state in just two steps with the
private measurements of the other agent as changes of their
own initial conditions.

A. Centralized-Equivalent Mean Computations

Incorporating all information of agent A to agent B is
done by smoothing agent B’s state at the initial time i with
all of agent A’s private measurements to get x̂B

i|N(A) =

x̂B(i,yA
i . . .yA

N ) as a first step. Then all of B’s own private
measurements yB

i . . .yB
N are applied on top of that changed

initial condition as a second step. For better legibility and
understanding, we present the following derivations using
the regular state notation. For the error-state notation in non-
linear systems, the matrices are replaced by their correspond-
ing Jacobians according to Eq. (21-22). The effect of this
piecewise linearized representation (linearized at each EKF
step) has minimal impact on the performance (c.f. results on
real data in Sec. V), yet allows the use of our proposed scat-
tering theory repertoire for fast (re-)computations. Deriving
x̂B
i|N(A) and PB

i|N(A), by applying the innovations e of A on
a joint state vector zi:



zi =

[
xA
i

xB
i

]
ej = HA,j x̃

A
j + nA

y,j[
x̂A
i|N(A)

x̂B
i|N(A)

]
=

[
x̂A
i

x̂B
i

]
+

N∑
j=i

⟨zi, ej⟩⟨ej , ej⟩−1ej (29)

Computing the covariances from states to innovations, and
noting that x̂i ⊥ x̃i (so ⟨x̂i, x̃i⟩ = 0) and ny,j ⊥ {x̃i, x̂i}
for j > i by definition:

⟨zi, ej⟩ = ⟨
[
xA
i

xB
i

]
, ej⟩ (30)

⟨xA
i , ej⟩ = ⟨xA

i ,HA,j x̃
A
j + nA

y,j⟩ (31)

= ⟨x̂A
i + x̃A

i ,HA,j x̃
A
j + nA

y,j⟩
= ⟨x̂A

i ,HA,j x̃
A
j ⟩+ ⟨x̂A

i ,n
A
y,j⟩+ . . .

⟨x̃A
i ,HA,j x̃

A
j ⟩+ ⟨x̃A

i ,n
A
y,j⟩

= 0 + 0 + ⟨x̃A
i ,HA,j x̃

A
j ⟩+ 0

= ⟨x̃A
i ,HA,jΦp,A(j, i)x̃

A
i ⟩

= ⟨x̃A
i , x̃

A
i ⟩Φp,A(j, i)

THT
A,j

= PA,iΦp,A(j, i)
THT

A,j (32)

⟨xB
i , ej⟩ = ⟨x̃B

i , x̃
A
i ⟩Φp,A(j, i)

THT
A,j (33)

= PBA,iΦp,A(j, i)
THT

A,j (34)

Now the smoothed estimate is:

x̂B
i|N(A) = x̂B

i +
N∑
j=i

⟨xB
i , ej⟩⟨ej , ej⟩−1ej

= x̂B
i +PBA,i

N∑
j=i

Φp,A(j, i)
THT

A,j⟨ej , ej⟩−1ej

= x̂B
i +PBA,iλ

A
i|N (35)

Given the initial covariance PBA,i at start time i, it
can be seen in Eq. (35) that the adjoint variable of A,
which was computed by A as part of sA, can be directly
used to smooth B with A’s private measurements. This is
a strong contrast to previous distributed approaches, that
assume/simplify that private measurements do not change the
state of other agents [7], [8]. The corresponding covariance
PB

i|N(A) of the smoothed estimate error is then:

x̃B
i|N(A) = xB

i − x̂B
i|N(A)

= xB
i − (x̂B

i +PBA,iλ
A
i|N )

= x̃B
i −PBA,iλ

A
i|N (36)

⟨x̃B
i|N(A), x̃

B
i|N(A)⟩ = PB,i +PBA,i⟨λA

i|N ,λA
i|N ⟩PT

BA,i

λA
i|N =

N∑
j=i

Φp,A(j, i)
THT

A,j⟨ej , ej⟩−1ej (37)

⟨λA
i|N ,λA

i|N ⟩ =
N∑
j=i

Φp,A(j, i)
THT

A,j⟨ej , ej⟩−1 · . . .

⟨ej , ej⟩⟨ej , ej⟩−1,THA,jΦp,A(j, i)

=

N∑
j=i

Φp,A(j, i)
THT

A,j⟨ej , ej⟩−1HA,jΦp,A(j, i)

= OA,i|N (38)

PB
i|N(A) = PB,i +PBA,iOA,i|NPT

BA,i (39)

OA,i|N is the observability gramian from the scattering
matrix SA with already included initial conditions of A that
is passed from A to B. For the covariance, state-of-the-art
distributed algorithms assume that there is no change for the
passive agents, but the private measurements of the active
agent do affect the mean and the covariance c.f. Eq. (35)
and Eq. (39). Our approach takes these changes into account
with minimal compute and communication requirements.

Now the private measurements of B can be applied on
the smoothed initial estimate, leading to a final estimate
{x̂B

N |N(A,B),P
B
N |N(A,B)} at time N that is equivalent to

the final estimate of a joint centralized system, although all
computations were done in a distributed fashion with a single
encounter (i.e., information exchange) of the two agents.
Note that {S0,B

i,N , s0,Bi,N } were used, which do not include
the initial conditions of B, since they are replaced by the
smoothed initial estimate. The dots are entries that don’t need
to be computed and can be omitted.[

I PB
i|N(A)

0 I

]
⋆ S0,B

i,N =

[
· PB

N|N(A,B)

· ·

]
(40)[

x̂B
i|N(A)

0

]
• s0,Bi,N =

[
x̂B
N|N(A,B)

·

]
(41)

B. Centralized-Equivalent Covariance Computations

The computation of the covariance of the smoothed initial
state and the final state of the passive agent B in Eq. (39) and
Eq. (40) was derived explicitly to show the contributions of
the active agent’s private measurements on the passive states.
But there is a more direct way, again, using scattering theory,
computing the complete joint covariance of A and B having
processed all private measurements at the final time N .

To find the cross covariances, we can convert a smoothing
problem to a filtering problem by extending the state and
fixing the time. For a fixed k and k < i we have the extended
state and system with initial conditions at time k:



zi,k =

[
xi

xk

]
zi+1 = F izi +Biui + Ginu,i

yi = Hizi + ny,i

F i =

[
Fi 0
0 I

]
Gi =

[
Gi

0

]
Hi =

[
Hi 0

]
ẑk,i =

[
x̂k

x̂k

]
Pz,k =

[
Pk Pk

Pk Pk

]
= P̄k

Noting that x̂k|i is the smoothed estimate of xk, applying
all measurements yk . . .yi gives the estimates and covari-
ances:

ẑi,k =

[
x̂i|i
x̂k|i

]
Pz,i =

[
Pi P12,ik

P21,ik Pk|i

]
Pz,i can be computed directly with scattering matrices,

because scattering matrices and the joint covariances with in-
terchanged columns satisfy the same Riccati equations [14],
[4]. If the columns of Pz,i are interchanged, we get the
scattering matrix of the single state system with the initial
condition of P̄k(i.e., P̄k ⋆ S0

k,N ):

J =

[
0 I
I 0

]
Pz,N = (P̄k ⋆ S0

k,N )J[
P12,Nk PN

Pk|N P21,Nk

]
= P̄k ⋆

[
Φ0

k,N P0
k,N

−O0
k,N Φ0,T

k,N

]
Given agents A and B with initial covariance P̄k and

generated SA,0
k,N and SB,0

k,N by their private measurements, we
can compute a centralized-equivalent covariance before the
joint update as:

SA = (P̄kJ ) ⋆ SA,0
k,N Pk|N(A) = SAJ

Pk|N(A),p = JPk|N(A)J

SB,p = (Pk|N(A),pJ ) ⋆ SB,0
k,N Pk|N(A,B),p = SB,pJ

Pk|N(A,B) = JPk|N(A,B),pJ (42)

Permutations, i.e. P ...,p, for the input covariances are
necessary, because agent A and B change the role of active
and passive, and then the order in the joint system is also
interchanged. As a last step, the joint measurement can
now be applied by both agents as a standard EKF update
on the joint system with centralized-equivalent covariance
Pk|N(A,B).

V. RESULTS

We have used UTIAS Multi-Robot Cooperative Localiza-
tion and Mapping Dataset [19] to evaluate our approach on
real data. Differential drive robots move indoors, logging
odometry data and range-bearing measurements of known
landmarks and other agents when they meet. We considered
robots 1 and 2 from the first dataset with their trajectories
shown in Fig. 1 and Fig. 2. The sampling rate of the
odometry was 25 Hz, and the trajectory duration was 375
sec. While landmark measurements updated the state, range-
bearing measurements of other agents can jointly update the
state of both agents.

Fig. 1. The trajectory of the first robot is shown in red, the slow EKF
computations are shown in blue (EKF 2) and the proposed fast EKF
computations are shown in green (EKF 2 with ST). When changing the
initial conditions and recomputing the EKF estimates, we achieve the same
estimates (i.e., path overlap), indicating that the proposed method can
replace computationally intensive re-computations while leading to the same
results.

A. Centralized-Equivalent Pairwise Estimation with Ground
Robots and Range-Bearing Measurements

We use the proposed methods to perform centralized-
equivalent estimation for two robots with asynchronous
pairwise communication constraints and compare the results
to a fully centralized implementation. Robot one and robot
two from the first dataset estimate their state with odometry
and known landmark measurements while building up scat-
tering matrices and source vectors. When they meet, they
exchange these pre-computed elements and can reproduce a
centralized-equivalent joint system update, as if they were
connected and exchanging information during the whole
time. Fig. 3 shows the estimation error against ground truth,
while Fig. 4 shows the error between the estimation methods.
There is an order of magnitude lower difference between the
two approaches compared to the error of the estimations with
respect to ground truth. However, our approach only needs
sporadic communication between the robots compared to the
fully centralized EKF implementation. There is a maximal
error of 2.25 cm and for the heading 0.7 degrees between
the two methods (due to space limitations the heading error
plot is not depicted).

And finally, in Fig. 5, we compare our approach against
Luft et al. [7] in terms of the joint system belief. Their
method has the same communication constraints but different
distributed covariance pre-computations than our approach.
They make certain approximations, and the resulting joint
belief is therefore not centralized-equivalent anymore during
joint updates. The employed Kullback-Leibler (KL) diver-
gence quantifies the difference between two probability dis-
tributions, and should therefore be close to zero if the beliefs
are identical. The KL divergence between the joint system
and our proposed method (shown in light blue) is close to
zero overall, while the values are an order of magnitude
higher for the method of Luft et al. [7](shown in light red).
This indicates that the proposed method provides indeed
centralized-equivalent beliefs.

B. Computation Times

The presented computation times correspond to the same
experiment as in the previous section. To describe our



Fig. 2. The trajectory of the second robot (red), the joint estimates (purple)
and the proposed centralized-equivalent approach (blue). The estimation
behavior is the same, although our approach is restricted in communication,
indicating that the proposed method can replace computationally intensive
re-computations while leading to the same results.
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Fig. 3. The estimation error for the position of the joint system and the
presented approach is shown. The joint system (purple) and the estimates of
the agents (green and blue for robot 1 and 2, respectively). The estimation
errors are very close for both approaches, showing that the presented
work can achieve the same estimation performance, while performing
computations efficiently and only when the agents meet.

approach’s computational efficiency, we need to compare it
to the computations required to process all measurements of
both agents in a joint system at the moment they meet again,
which is done in Fig. 6. The first plot shows the computation
times for propagation of one agent (0.15 ms) in red and
the overhead in each propagation step (0.1 ms) to build the
scattering matrices for our approach in blue. The second plot
shows how fast our approach computes the joint covariances
for joint updates. The longer the agents did not see each
other, the more measurements are processed, and therefore
more processing time is necessary (maximum of 0.069 s at
t = 166). On the other hand, if the measurements would be
all processed by a joint system only once the agents meet and
not while they are moving, then the computation takes longer,
as shown in the third plot in red (maximum of 1.0 s at t =
166). Note that the agents can not communicate until they
meet, i.e., can not process the other agent’s measurements
while moving. The relative computation time of our approach
compared to the joint system computation is shown in the
last plot, especially when the agents do not meet for long
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Fig. 4. The plots show the difference in the estimates of the centralized
estimator and the two agents (agent 1 in green, agent 2 in blue) performing
joint updates with the presented centralized-equivalent approach. In the top
plot the difference in x and y is computed as a norm, and in the bottom plot
the difference in heading is shown. The error introduced by the presented
approach is about an order of magnitude lower than the estimation error
itself, comparing the spike at 2.25 cm against a maximum error of 40 cm
in Fig. 3.

Fig. 5. The symmetric Kullback-Leibler Divergence (KL) quantifies the
difference of two beliefs, in our case considering normal distributions.
We plotted the KL divergence between the belief of the joint system and
the belief of the two agents when they meet and perform a joint update
using scattering theory in light blue. As a comparison the KL divergence
of an approximating approach of Luft et al. [7], which has the same
communication constraints, is also shown in light red. While the difference
for our approach is overall very low, the approximations of Luft et al. lead
to an order of magnitude higher values, indicating that the proposed method
is indeed centralized-equivalent.

times our approach becomes more efficient (6.8% at t = 166
compared to the joint system).

VI. CONCLUSIONS

We presented a distributed but centralized-equivalent state
estimation approach for two robots that have asynchronous
pairwise communications constraints. The approach is based
on the scattering theory and a fruitful analogy of waves
traveling trough media was made. In this analogy we first
derived the necessary and novel methods for distributed mean
pre-computations on non-linear systems and then applied it to
pairwise estimation. The combination of many measurements
and the ability to change initial conditions in one step en-
abled us to smooth the state of agents with the measurements
of other agents only when they meet, not requiring any



Fig. 6. We show the computational efficiency of our approach compared to
a joint system computation. Agents can only exchange measurements when
they meet and therefore all measurements would need to processed either
with our faster approach (see second plot) or by forming a joint system
and reprocessing all measurements on meetup with a joint system (see third
plot). Our approach induces an overhead (see blue line in first plot), but
reduces the overall computation time on meetup drastically (see relative
comparison last plot).

constant communication channel to be open yet being able to
reconstruct all statistical information from observations the
other agent had since the previous meeting. Our novelty is
that we extended the previous work on Collaborative State
Estimation with constrained and pairwise communication to
be statistically truly centralized-equivalent for two robots.
Furthermore, we showed that the benefits of pairwise updates
are maintained while requiring only very few computations,
because measurements can be readily applied with the help
of scattering matrices and source vectors. We evaluated our
algorithm on real data and showed that the difference to the
estimation in a centralized system is an order of magnitude
smaller than the actual estimation error of both systems.
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Bias Compensated UWB Anchor Initialization using
Information-Theoretic Supported Triangulation Points

Julian Blueml1, Alessandro Fornasier1, Stephan Weiss1

Abstract— For Ultra-Wide-Band (UWB) based navigation,
an accurate initialization of the anchors in a reference coor-
dinate system is crucial for precise subsequent UWB-inertial
based pose estimation. This paper presents a strategy based
on information theory to initialize such UWB anchors using
raw distance measurements from tag to anchor(s) and aerial
vehicle poses. We include a linear distance-dependent bias
term and an offset in our estimation process in order to
achieve unprecedented accuracy in the 3D position estimates
of the anchors (error reduction by a factor of about 3.5
compared to current approaches) without the need of prior
knowledge. After an initial coarse position triangulation of the
anchors using random vehicle positions, a bounding volume
is created in the vicinity of the roughly estimated anchor
position. In this volume, we calculate points which provide
the maximal triangulation related information based on the
Fisher Information Theory. Using these information theoretic
optimal points, a fine triangulation is done including bias
term estimation. We evaluate our approach in simulations with
realistic sensor noise as well as with real world experiments.
We also fly an aerial vehicle with UWB-inertial based closed
loop control demonstrating that precise anchor initialization
does improve navigation precision. Our initialization approach
is compared to state-of-the-art as well as to an initialization
without the simultaneous bias estimation.

I. INTRODUCTION

For UAV localization, often a Global Navigation Satellite
System (GNSS) is used. But in areas where there is no
GNSS signal available, e.g. forest or indoor locations, some
other form of localization provider needs to be available.
This localization provider can for example be a set of
UWB modules. UWB is a communication technique which
operates in the RF (radio frequency) spectrum and as the
name implies, it operates on a large band of frequency. This
results in much more precise and less error prone distance
measurement than other e.g. ultrasonic based systems. The
position of a mobile robot can be calculated in a similar
fashion as it is done in GNSS systems. The position can
be computed through trilateration using at least three UWB
modules which are configured to be senders (also called
anchors). Similarly to the GNSS satellites for an accurate
estimation of the mobile robot, the positions of these anchors
have to be known as accurately as possible. Often, this is
measured manually but this can be very time consuming
and inaccurate, especially in wide areas and with low-quality
beacons, in buildings with a large number of rooms, or in
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University of Klagenfurt, Austria j1blueml@edu.aau.at,
{firstname.lastname}@ieee.org

This work is supported by the EU-H2020 project BUGWRIGHT2 (GA
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Fig. 1: UAV used for real world experiments with computa-
tion board and UWB node.

areas where the anchors are hard to reach. Even though the
location measurement is accurate, biases in the signals may
introduce inaccuracies in the trilateration process.

Thus, the here presented approach not only focuses on
the precise anchor initialization without prior knowledge,
but also on the estimation of bias terms in the raw signal.
The goal is to place the anchors randomly in a room and
the mobile robot, in our case a UAV, initializes the anchor
positions automatically. In addition it calculates a linear bias
model with a constant offset term for the distance dependent
error of the UWB modules. The proposed initialization is a
two stage process. First, the UAV navigates to some random
points in space and records at each point a measurement
to the UWB anchor which’s position should be initialized.
After sufficient points have been reached an initial guess
of the position is performed. We leverage and extend the
approach presented in [1] with a modified least squares
approach to include the bias terms. The calculated position
and corresponding covariance matrix is used to calculate
an appropriate boundary volume which is used to construct
optimal points using the Fisher Information Matrix (FIM).
At these optimal points, the available information of the
range-related UWB measurements is maximised to archive
best trilateration results. With the information obtained by
the mobile robot at these optimal points a final estimation
of the position of the UWB anchor including the linear
distance dependend bias and constant offset is calculated
using the same modified least squares algorithm used for
the trilateration from the random points.

II. RELATED WORK

In GPS denied environments e.g. inside buildings, range
sensors are a popular choice for localization tasks. In [2]



several different indoor positioning systems and their algo-
rithms are examined. They found out that systems using
infrared, ultrasonic sound or UWB signals have the best
accuracy but infrared and ultrasonic sound suffer in non
line of sight situations. With these signals the error increases
while with UWB signals the accuracy stays approximately
the same even in non line of sight conditions. The authors
of [3] propose a UWB-IMU pose estimation system. The
system assumes known, fix UWB anchor positions and
is reliable under multipath effects and non line of sight
conditions. Ledergerber et al. [4] presented a localization
system using UWB transceivers with known positions for
robot localization. The system is also able to handle multiple
robots simultaneously.

There is a large body of work in the area of calibrating
(or initializing) positioning systems. The position of the
anchors have to be known as exact as possible to reduce
the localization error. Usually calibration is done manually
by measuring the exact position of the UWB anchors but
since this is an error prone and time-consuming procedure
and also not suitable in some scenarios we want to avoid
it whenever possible. Hol et al. [5] proposed a calibration
method for UWB receivers for indoor positioning. First
multiple UWB receivers are placed to stationary places.
The same number of transmitters are placed near to the
receivers. They acquire a dataset for this configuration. On
this dataset a nonlinear optimization is performed. Then a
transmitter is moved around the receivers and another dataset
was recorded. A second nonlinear optimization was done on
the second dataset with the positions obtained from the first
optimization as initial values.

Another approach to perform anchor initialization is de-
scribed in [6]. The goal of this paper is to provide a
initialization method for dynamic anchor setups. Range only
measurements are performed between mobile tag and fied
anchors. The proposed approach is apparently very robust
against multipath propagation because a RANSAC based
outlier rejection is used before the position candidate is
further refined by an Unscented Kalman Filter (UKF).

Another way to auto calibrate UWB anchors is to use
range information from a receiver and estimate the position
of the anchors. Therefore, the range-related information of
the anchors is maximized. For maximizing information a
popular tool is the FIM or its inverse which corresponds
to the Cramer-Rao Lower Bound (CRLB). Cardinali et al.
[7] used the Cramer-Rao Lower Bound on different UWB
signals to obtain the ranging accuracy of these signals. The
authors of [8] proposed an algorithm for optimal sensor
placement in 2D. By maximizing the FIM the optimal sensor
positions can be obtained in order to get the position of the
signal transmitters.

In our work, we extend the approach of [8] to 3D and
flip the problem set to determine the optimal positions
of the moving module to gather most information for the
triangulation of the fixed module(s).

In [6], the authors provide an initialization method for
dynamic anchor setups using only the range measurements

from the UWB modules. The authors apply a cascade con-
taining an outlier removal step through RANSAC with a
subsequent filtering process based on an Unscented Kalman
Filter (UKF). The double use of the same information in
the RANSAC and UKF step may lead to inconsistencies.
In addition, the selected positions for triangulation are on a
fix grid pattern and not chosen based on their information
content.

With respect to the state of the art, we improve the
initialization of the anchors’ position in 3D and include
signal bias terms to additionally improve subsequent state
estimators on mobile systems using the UWB anchors as
positioning system. In particular our contributions are as
follows:
• the extension from 2D to 3D space and flipping of

FIM/CRLB based optimal sensor placement methods
[8] for range sensing modules .

• FIM/CRLB definition for the problem set with extended
covariance models including distance dependency, bias
terms, and correlation between measurement positions.

• the extension to initialize several UWB anchors in real-
time with low computational complexity and improved
models including distance dependent bias and offset
terms without any prior knowledge.

• a detailed evaluation based on verified simulations and
realistic real experiments including a comparison (and
improvement) to a state of the art approach.

• an evaluation of the effect of the anchor initialization-
precision on the navigation precision when three UWB
anchors are used for on-board real-time UWB-inertial
positioning control of a UAV.

III. UWB ANCHOR INITIALIZATION PROCESS

A. Coarse initial position computation

Over the entire initialization process to compute the UWB
anchor positions in a 3D reference frame, we assume the
mobile robot, in our case a UAV, can estimate its own pose
in the 3D reference frame through other sensor modalities
(e.g. vision based, with GNSS signals, laser, etc). In our real
world examples, we use an Optitrack motion capture system.

To calculate the information content of a UAV position for
best UWB anchor initialization based on the FIM, at least a
rough estimate of the UWB anchor needs to be available. For
this coarse initialization, we fly the UAV to random positions
while gathering range measurements from the UWB node on
the vehicle to the anchor we want to initialize. We extend
the approach presented in [1] such that we can formulate a
linear least squares as shown in the following even with our
additional states including the distance dependent bias and
constant offset. The distance from the node on the UAV to
the anchor can be expressed as:

z2 = (p− q)2 = (p2 − 2pq + q2) (1)

d2p = p2x + p2y + p2z , d
2
q = q2x + q2y + q2z (2)

where p = [px, py , pz]T describes the node position in the
global frame, q = [qx, qy , qz]T describe the position of the



anchor, dq the distance from the anchor to the origin of the
global frame. z is the distance between node and anchor
and dp the distance from the node position to the origin of
the world frame. Assuming known node (i.e. UAV) positions
and no biases as done in [1], for each distance measurement
between node and anchor we can then formulate a modified
least squares problem as

2px(t1) −2py(t1) −2pz(t1) 1
−2px(t2) −2py(t2) −2pz(t2) 1

...
...

−2px(tn) −2py(tn) −2pz(tn) 1


qxqyqz
d2q

 =


z2(t1) − d

2
p(t1)

z2(t2) − d
2
p(t2)

...
z2(t3) − d

2
p(t3)


(3)

which is a set of linear equations in the form of Ax = b
where the rows of A are a measurement at time ti. This
can be solved for the anchor position q. Although UWB
sensors are said to be fairly robust against multi-path issues,
they show in practice a non-negligible distance dependent
bias and constant offset depending on the manufacturer. To
increase the accuracy of the triangulation results, we extend
the above distance model of Eq.(1) with a distance dependent
bias β and a constant offset γ to better reflect the actually
measured distance zm

zm = βz + γ (4)

Following the idea in [1], we design two additional auxiliary
elements β2 and γ, and modify the previous distance term
d2q in Eq.(3) to include the new bias terms
−2px(t1) . . . −2px(tn)

−2py(t1 . . . −2py(tn
−2pz(t1) . . . −2pz(tn)

d2p(t1) . . . d2p(tn)

2z(t1) . . . 2z(tn)

1 . . . 1



T 
β2qx
β2qy
β2qz
β2

γ
β2(d2q − γ2)

 =


z2t1
z2t2

...
z2tn

 (5)

solving this linear set of equation in the form of Ax = b
allows then to solve for the anchor position q and the
two bias terms β and γ. The entries of Eq.(5) are based
on the randomly chosen UAV positions. In practice, this
system of equations is usually not well posed yielding poor
solutions. Nevertheless, the coarse direction and distance
can be inferred as an initial guess to apply our information
theoretic approach for optimal UAV position selection in a
refinement step as detailed below.

B. FIM based optimal points calculation

The goal is to find the optimal positions where the UAV
(i.e. the UWB node) has to be placed in a limited volume to
best triangulate a fix UWB anchor in the global coordinate
frame. Until this anchor is triangulated, we assume the UAV
position is known within a bounded volume (e.g. through
fusion of IMU and a visual fiducial in the volume where the
fiducial is in the field of view, a traking system, an area
where GNSS signals are available, etc). In order to find
the optimal sensor placement, the corresponding Cramer-
Rao Lower Bound (CRLB) or FIM is considered [9]. The
CRLB expresses a lower bound on the variance of estimators
of a deterministic parameter. By achieving this bound the
unbiased estimator is said to be (fully) efficient. The FIM

on the other hand captures the amount of information from
the obtained measured data of an unknown parameter which
gets estimated. Under the regularity conditions the variance
of any unbiased estimator is at least as high as the inverse
of the FIM and the following inequality holds:

Cov{θ̂} ≥ FIM(θ)−1 = CRLB(θ) (6)

where θ is the variable of the estimation problem and where

Cov{θ̂} = E
{
(θ̂ − θ)(θ̂ − θ)T

}
(7)

Cov{θ̂} corresponds to the covariance matrix of the esti-
mated parameters. In the following, FIM(θ) (abbreviated
as FIM) is defined as

FIM(θ) = E
{
(∇θlog pθ(z))(∇θlog pθ(z))T

}
(8)

where∇θlog pθ(z) denotes the gradient of the log-likelihood
function with respect to the unknown parameter θ. By
selecting a proper estimator the minimization of the CRLB
or the maximization of the FIM leads to a decrease of the
uncertainty when estimating the parameter.

1) Fisher Information Matrix for UWB anchor initial-
ization: Let I denote the global reference frame and let
q = [qx, qy, qz]

T be the position of the UWB anchor which’s
position needs to be refined in I. Furthermore, let the
position of the UWB node mounted on the UAV, assuming
no or known offset between IMU and mounted UWB node,
in I be pi = [pix, piy, piz]

T with i = 1, 2, . . . , n the i − th
position of the UAV where a measurment was taken. The
distance between the UWB anchor and the i− th position of
the UWB node on the UAV is then given by di = ||q− pi||,
where || · || denotes the euclidean norm. The, now noisy,
measurement model from Eq. (4) is then given by

zmi = β(||q−pi||+ωi)+γ = β(di+ωi)+γ, i = 1 . . . n (9)

where zmi is the i − th distance measurement and ωi as
distance dependent additive noise. Usually it is assumed that
the measurement noise is additive zero mean white Gaussian
noise with ωi ∼ N (0, Ci(di)) and Ci = σ2(I+di)

2, where I
is the identity matrix (i.e. all noise sources are independent).
In vector notation we have zm = [zm1 , zm2 , . . . , zmn ]

T

which corresponds to the vector containing the distance
measurements, the vector of the actual ranges is d =
[d1, d2, . . . , dn]

T and the corresponding measurement noise
vector is ω = [ω1, ω2, . . . , ωn]

T . In order to obtain the Fisher
Information Matrix we have to calculate

FIM(θ) = E
{
(∇qlog pq(zm))(∇qlog pq(zm))T

}
(10)

where pq(z) is the likelihood function for the target posi-
tioning problem which is given by

pq(zm)) =
1

(2π)
n
2 |C| 12

exp

{
−1

2
(zm − d)TC−1(zm − d)

}
(11)

For general Gaussian noise there is also a general expression
of the Fisher Information Matrix [10]. For the estimation of



the UWB module this expression is given by Eq. (12).

FIM(q)kl =
∂zm(q)

∂qk

T

C(q)−1
∂zm(q)

∂ql

+
1

2
tr

{
C−1(q)

∂C(q)

∂qk
C−1(q)

∂C(q)

∂ql

}
(12)

with the indices k and l representing the three coordinate
axis x, y, z respectively. Note that with our extension to use
a distant dependent bias term, each covariance matrix Ci per
measurement is dependent on the anchor position q. Thus,
the second term in Eq. 12 needs to be considered as non-zero
term.

2) Optimality criteria: There are several optimality cri-
teria for the Fisher Information Matrix to maximize the
gathered information. Some of them are described in [11]:
• D-optimum design: the determinant of the FIM gets

maximized:
(
arg max

θ∈<n
|FIM(θ)|

)
.

• A-optimum design: the trace of the inverse of the FIM

gets minimized:
(
arg min

θ∈<n
tr
(
FIM(θ)−1

))
.

• E-optimum design: the smallest eigenvalue of the FIM

gets maximized:
(
argmax min

θ∈<n
eigv (FIM(θ))

)
.

For this paper the D-optimum design is chosen. It mini-
mizes the volume of the multi-dimensional uncertainty ellip-
soid for the parameters to be estimated for a given model.
The A-optimum design minimizes the trace of the CRLB
which results in minimizing the average variance of the
estimates. The E-optimum design maximizes the smallest
eigenvalue of the Fisher Information Matrix which means
that the length of the largest axis of the uncertainty ellipsoid
gets minimized. The main advantage of D-optimum design
is that it is scale invariant in the parameters and it is also
invariant to linear transformations. A-optimum design and
E-optimum design are not invariant to these transformations.
The disadvantage of D-optimum design is that if no global
optimum is found the obtained D-optimum design can be
erroneous. This is due to the fact that the uncertainty ellipsoid
can get minimized in one dimension while in the other
dimension we do not have information at all. In other words,
the uncertainty ellipsoid is very small in on direction while it
is very large in the other direction. Due to the computational
constraints we have on the UAV and the benefit of the D-
optimum of not requiring to compute a matrix inverse, it
is, however, still our favorite choice; the E-optimum design
needs to compute the eigenvalues of the FIM and the A-
optimum design needs to inverse the FIM.

Under certain assumptions, the maximization of the FIM
determinant could be solved analytically. As an example [12]
assumes that the measurement points are only on a circle and
the source is in the middle of the circle. This gives an optimal
sensor placement when the sensors are placed in 2π i/n; i =
1, 2, . . . , n angles around the source on the circle. With this
approach the number of sensors placed around the source can

be arbitrary. In [13] this approach gets extended to 3D. Again
assumptions are made in order to get an analytical solution.
The sensors are now placed on a sphere and the source is
placed in the middle of it. This sphere gets intersected with a
hyperboloid. The sensors are then placed on the intersection
area. Since we do not want to make any assumption on the
position of the range module and the measuring point e.g.
we want to place the measurement point freely in a certain
area and the source can be placed anywhere in a certain
location, we calculate the maximum of the FIM determinant
numerically using the previous coarse initialization of the
anchor as a rough estimate of q. For simulation purposes the
Global Optimization Toolbox of MATLAB is used.

As a toy example to demonstrate the functioning of our
approach, in Fig. 2, we assume that the UAV is only allowed
to move in a volume of 1 × 1 × 1m and we would like
to achieve best UWB anchor-position initialization by only
flying the UAV to five positions. Furthermore, we assume
distance dependent covariance matrix. The true location of
the UWB anchor to be estimated is set to [1.5, 1, 0]Tm. As it
is intuitive, the optimal positions for the UAV to fly to within
the allowed volume are at the corners of the cube closest to
the anchor.
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Fig. 2: Optimal measurement points for 5 measurements
and 1 UWB anchor at [1.5, 1, 0]T for a distance dependent
covariance matrix.

This toy example also highlights the low sensitivity of
the selection of the optimal points in the volume with
respect to the UWB anchor position: Already a rough initial
direction and distance of the anchor with respect to the
volume is suffcient to converge to the depicted result in
Fig. 2. Or in other words, to make the optimal points be
placed at different locations than depicted in Fig. 2, the true
anchor position needs to drastically change. Furthermore, on
distance independent covariance matrices, [14] proposed to
transform the FIM to spherical coordinates to emphasize that
the FIM depends on the angle between the range vectors.
Adding the distance dependent element essentially adds the
requirement ”closer is better” – again without the need of
very precise initial position information of the anchor. This
low sensitivity of the optimal point placement with respect to
the anchor point is in favor our our coarse initialization still
being sufficiently accurate to generate informative points in
a volume for the subsequent anchor-position refinement.



C. Distance dependent and position correlated covariance

The above toy example included the constraint that no two
positions are allowed to be selected at the same locations.
Consider again the above mentioned distance dependent
covariance matrix Ci = σ2(I + di)

2. One can see that it
depends explicitly on the distance between the anchor and
the measurement points (i.e. on di = ||q − pi||). When the
determinant of the FIM gets maximized, all positions of the
measurement points tend to collapse over the range module
since the distance dependent measurement error gets reduced
as much as possible. This means that we have to define
constraints for the optimization algorithm. In reality, and
given the requirement of a base-line for later trilateration
of the anchor position through use of the UAV positions, the
measurement points are more correlated the closer they are to
each other. This has to be considered in the covariance matrix
for the FIM. For the correlated covariance matrix the squared
exponential covariance is used. It is defined as follows per
element:

Cci,j = σ2 exp

(
− (pi − pj)2

2l2

)
, (13)

where l is the length-scale. The length-scale indicates the
smoothness of the function. Large length-scale values char-
acterize slow changing functions while small values charac-
terize functions which can change quickly.
By combining the distance depended covariance matrix and
the correlated covariance matrix one obtains

C = σ2 (I + δ (d))2 + Cc (14)

D. Refined anchor positioning and bias calculation

Using this definition of the covariance matrix in the
proposed D-optimum FIM optimizer, we take the UAV
positions correlation into account and can ensure well spaced
measurement points in the defined volume. Once the optimal
positions are defined in the volume we re-solve Eq. 5 for the
refinement of the anchor position and at the same time for
the bias terms. The anchor position and bias terms are later
used in the closed loop tightly coupled UWB-inertial based
control of the UAV.

IV. RESULTS

A. Simulation results

Using the process described in Section III we simulated
UWB range measurements to different locations using our
distant dependent bias model from Eq. (9) with β = 0.0049
and γ = 0.0951. These values result from static tests with
real hardware. For the standard deviation of the added noise,
we did a sweep from σ starting at 0.02m to 0.2m in 0.02m
steps. Each σ step consists of 200 individual simulation runs
in order to obtain statistically relevant results. Fig. 3 shows
the results. We noticed that our bias compensation signif-
icantly improved the results: for e.g. σ = 0.1m the mean
initialization error without bias consideration was 0.29m
whereas it dropped to 0.13m using our model including the
bias terms. Similarly, the error dropped from 0.58m to 0.23m

for σ = 0.2m with increasing improvements at higher noise
values.

Fig. 3: Error statistics for our proposed bias compensated
UWB anchor position initialization in Eq. (5) versus the one
proposed in [1] without bias compensation in Eq. (3).

In Fig. 4, we show the complete initialization procedure
showing the true position of the anchor (red triangle), the
randomly selected initial triangulation points (green ”x”)
with the coarse initial anchor estimation resulting from using
these positions in Eq. (5) (green triangle), the subsequently
selected volume within which information theoretic optimal
triangulation positions are chosen (blue ”x”), and the refined
anchor position estimation based on these optimal position
using again Eq. (5) (blue triangle). As a comparison and
demonstration of the effect of taking our suggested bias com-
pensation into account, the figure also shows the triangulated
anchor position using the optimal points but Eq. (3) without
modelling the bias (black triangle).

B. Real world results

We further performed a series of real experiments to
demonstrate the use of our approach with real hardware and
even for subsequent UWB-inertial closed loop control of
a UAV. For all real experiments, we use an Asctec Hum-
mingbird quadrotor (Fig. 1) equipped with a flight computer
(Odroid XU4) and a UWB module (DecaWave TREK1000).
Furthermore, three UWB modules (DecaWave TREK1000)
are placed arbitrarily in the environment. The UWB distance
measurements have a standard deviation of 0.09m. We use an
Optitrack motion capture system to obtain the UAV position
for all our process steps. We compare our real world results
to the ones reported in [1] where the authors move a UAV
on random trajectories to add range measurements whenever
they improve the condition number of the matrix in Eq. 3
consisting of previous measurements. New measurements are
added up to a maximum number of measurements or until a
certain quality of the matrix’ condition number is reached.

In a first experiment, we performed 120 initializations
as reported in [1]. The mean initialization distance error
using our bias compensated method in Eq. 5 is 0.0984m±
0.0401m. Not using the bias compensation but with our



Fig. 4: Our proposed initialization procedure first using
random triangulation points (green x) for coarse anchor
initialization (green triangle) and subsequently for the FIM
optimization to find optimal triangulation points (blue x)
within a volume for position refinement (blue triangle). Also,
the consideration of bias terms has an important positive
performance impact (blue versus black triangle). Ground
truth is the red triangle.

suggested method on FIM based triangulation position opti-
mization we achieve a mean initialization distance error of
0.1417m±0.0344m. In contrast, the random approach based
on the matrix condition number without considering biases
in [1] reports an error of 0.3444m±0.1326m (over 40 runs).
Our approach shows an improvement by a factor of nearly
3.5. Fig. 5 shows the initialization results of our approach
with bias consideration.

0 0.05 0.1 0.15 0.2 0.25 0.3
position error [m]

initialization error
mean
standard deviation

Fig. 5: Error statistics over 120 runs of UWB initialization

Additionally two more experiments where performed, a
hovering test and an trajectory tracking test using a tightly
coupled UWB-inertial EKF based on the anchor position
initialized by our proposed method. Ground truth is optained
by our Optitrack system. The mean tracking error for the
trajectory following was 0.19m with a standard deviation of
0.0997m while flying 20 times a mission with 18 waypoints
(Fig. 6). In the hovering test, the UAV was sent to the
height of 1m and was hovering there for 60 seconds. We
used five different pose estimators on the UAV for closed
loop control: i) Optitrack as a reference (ref), ii) UWB
measurements with correctly initialized anchor positions but
without a bias model (u-gt), iii) UWB measurements with
estimated anchor positions using our FIM optimization but
without a bias model (u-est), iv) UWB measurements with
estimated anchor positions using our FIM optimization and
proposed bias model (u-bias), v) UWB measurements with

Fig. 6: Flying 20 times through 18 waypoints using a
tightly coupled UWB-inertial EKF based on the anchor
initializations of our proposed method. Ground trugh (blue)
is obtained from an Optitrack system.

estimated anchor positions using the approach in [1]. Tab. I
shows the RMSE for all setups. For the method proposed in
[1] and with our best tuning knowledge applied, we still got
to an RMSE of 0.713m. Unfortunately, the authors in [1]
did not report the performance purely navigating based on
UWB-inertial estimation in their work. Interestingly, all other
UWB based setups show similar performance despite the
improved UWB positioning and bias compensation through
our method. With an RMSE of over 1cm even with Optitrack
measurement, we assume that this is due to the low controller
performance of the UAV shadowing estimation accuracy.

ref u-gt u-est u-bias [1]
RMSE [m] 0.012 0.025 0.029 0.028 0.713

TABLE I: Results of the hovering experiment

V. CONCLUSION

In this paper, we addressed the problem of accurate
UWB anchor initialization without prior knowledge using
the FIM for information-optimized triangulation-position
selection and using a distance dependent bias model for
the UWB measurements to improve the final triangulation
accuracy. Our approach is based on two steps where we
first use randomized triangulation points for a coarse anchor
initialization and bias estimation. These values serve then for
a FIM based optimization to generate optimal triangulation
points used in a refinement step for anchor position and
measurement biases. The result has a 3.5 times lower position
error compared to state of the art and reaches an anchor
initialization accuracy of 9.8cm. The proposed approach can
be applied sequentially or as a lump-sum optimization to
multiple anchors to use their initialized positions for subse-
quent UAV flight based on on-board, real-time UWB-inertial
state estimation. We showed real flight following a trajectory
with an RMSE of 19cm and a hover performance of under
3cm RMSE greatly superseding previous approaches.
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Abstract: Ultra-Wide-Band (UWB) positioning systems are now a real option to estimate the
position of generic agents (e.g., robots) within indoor/GPS-denied environments. However, these
environments can comprise metallic structures or other elements which can negatively affect the signal
transmission and hence the accuracy of UWB-based position estimations. Regarding this fact, this
paper proposes a novel method based on point-to-sphere ICP (Iterative Closest Point) to determine
the 3D position of a UWB tag. In order to improve the results in noise-prone environments, our
method first selects the anchors’ subset which provides the position estimate with least uncertainty
(i.e., largest agreement) in our approach. Furthermore, we propose a previous stage to filter the
anchor-tag distances used as input of the ICP stage. We also consider the addition of a final step
based on non-linear Kalman Filtering to improve the position estimates. Performance results for
several configurations of our approach are reported in the experimental results section, including
a comparison with the performance of other position-estimation algorithms based on trilateration.
The experimental evaluation under laboratory conditions and inside the cargo hold of a vessel
(i.e., a noise-prone scenario) proves the good performance of the ICP-based algorithm, as well as the
effects induced by the prior and posterior filtering stages.

Keywords: UWB positioning system; point-to-sphere ICP; range filtering; ferromagnetic interference

1. Introduction

Position estimation in GPS-denied environments is of great interest in a large variety of
applications, including indoor mobile robotics. Generally speaking, the so-called Indoor Positioning
Systems (IPSs)—that is, systems that continuously and in real-time determine the position of an object
in an indoor environment—can be applied in these cases [1]. From the technological point of view, IPSs
comprise Radio Frequency Identification (RFID)-, Infrared (IR)-, Ultrasound (US)-, ZigBee-, Wireless
Local Area Network (WLAN)-, and Ultra-Wide-Band (UWB)-based approaches, to name but a few.
It is well-known that each of these technologies has its own pros and cons. By way of example, RFID
localization systems do not require Line-of-Sight (LOS) to operate, which is critical for IR-based devices,
but the coverage of the former is smaller in comparison with other technologies; IR and US signals do
not penetrate solid walls, while ZigBee and WLAN signals do; ZigBee, however, is vulnerable to a
wide range of signal types using the same frequency; while the performance of WLAN-based systems
can be affected by changes in the strength map of the operating area. Likewise, UWB systems allow
high-accuracy positioning, but can be affected by the presence of metallic materials. These are only a
selection of the considerations to be made; the reader is referred to [2] for a more detailed overview
and a comparison of IPSs.
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In this paper, we focus on UWB positioning systems, with the goal of estimating the position of
one or more devices, generally named tags, which are moving through an environment where a set of
devices/beacons named anchors have previously been placed. UWB-based IPSs typically measure the
distance from the tag to each of the anchors (e.g., four for 3D pose estimation), and combine them to
obtain the position estimate. Unfortunately, the quality of the measured ranges may be affected by
noise, which consequently propagates through the calculations and affects the reliability of the position
estimates [3]. Indeed, some manufacturers warn about unpredictable effects on range measurements
because of the presence of metallic materials in the surroundings of the operation area, and hence
they recommend ensuring a minimum distance (above 20 cm) between the anchors’ antennas and any
metallic element (see, e.g., www.pozyx.io/technology/where-to-place-the-anchors).

In this work, we propose a new method that has exhibited good performance in these noise-prone
environments. The main novelty of this method is that it makes use of the well-known Iterative Closest
Point (ICP) algorithm to estimate the position of the tag. Toward this end, we modified ICP, which is
typically used to find the translation and rotation between two point clouds, to compute the position
of the UWB tag through the computation of point-to-sphere correspondences. To the best of our
knowledge, this new method is the first ICP-like algorithm that produces position estimates from data
provided by a UWB-based localization system.

For performance evaluation purposes, we compared the aforementioned ICP-based method with
other UWB-based position estimation approaches based on trilateration, focusing on the assessment
of their noise-tolerance capabilities. Moreover, we also evaluated the effect of attaching pre- and
post-processing filters to each of the methods involved in the comparison: on the one side, the
pre-processing stage filters the tag-to-anchor range measurements on an anchor-by-anchor basis,
while on the other side, the post-processing stage filters the raw position estimates resulting from the
calculations. Finally, the algorithm’s performance is assessed under laboratory conditions and—as
already mentioned—within a particularly noise-prone environment, such as a cargo hold of a
large-tonnage vessel. Once more, to the best of our knowledge, this is the first time that a UWB-based
IPS has been evaluated inside a ship, and the obtained results are reported, which can be regarded as a
secondary contribution.

The rest of the paper is organized as follows: Section 2 reviews main approaches in UWB-based
position estimation methods; next, Section 3 overviews our methodology regarding UWB-based
position estimation and details the pre- and post-processing stages; Section 4 describes the novel
ICP-based method to estimate the UWB tag position; Section 5 overviews the different methods chosen
for the comparative assessment, which is actually performed in Section 6, where we evaluate the
performance of all the configurations considered, both under laboratory conditions and within a real,
noise-prone environment; finally, Section 7 draws some conclusions about the new method, as well as
about the experimental results reported.

2. UWB-Based Position Estimation

Among the different currently available possibilities, UWB technology has emerged as one of
the leading core technologies for IPS development thanks to (1) the resilience of UWB ultra-short
pulses to frequency-dependent absorption, (2) a relatively low cost and easy deployment, and (3) the
ultimate accuracy which can be achieved. It is well known that one of the key points is the
measurement of distances between the tag(s) and the anchors. In this regard, a rough classification of
UWB-based position estimation methods can be stated according to the base estimation technique that
is adopted [4]:

• Time of Arrival (TOA). Algorithms in this category estimate the position of the tag computing the
intersection between the circumferences (or spheres in 3D) centred at each anchor, whose radius
is the estimated distance from the tag to the corresponding anchor. A survey reviewing several
TOA methods can be found in [5]. In [6], the authors evaluate different TOA-based algorithms in
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a realistic indoor environment. As a real application example, a UWB system based on TOA is
used in [7] for personnel localization inside a coal mine.

• Time Difference of Arrival (TDOA).This category comprises algorithms which estimate the
position of the tag considering the difference between the reception times in each anchor given
a signal sent by the tag. These methods require some synchronization mechanism between the
different devices, as well as significant bandwidth in comparison with other methods. In [8],
the authors propose a TDOA method to operate in complex environments, specially under
non-line-of-sight (NLOS) conditions. This method makes use of an Extended Kalman Filter
(EKF) as a post-processing stage. Another practical example is [9], which describes a real-time
positioning system intended for disaster aid missions.

• Angle of Arrival (AOA).Methods in this category estimate the position of the tag using the
direction of propagation of the signals sent by multiple sources (i.e., the anchors). The location
is found from the intersection of the angle line for each signal source. The algorithms based on
AOA have a higher complexity and their accuracy may decrease when the distance increases.
Among the large number of AOA-based approaches that can be found in the literature, we can
mention [10], which makes use of a KF and relies on a linear quadratic frequency domain invariant
beamforming strategy, and [11], which presents a cooperative positioning method that makes use
of all the sensor nodes instead of using only the anchors.

• Received Signal Strength (RSS).These methods employ the signal strength as an estimator of the
distance. Among the many RSS-based algorithms, we can differentiate two main strategies. On the
one hand, approaches based on trilateration, where the distance estimates are used to guess the
position of the tag using the same methods employed by TOA methods (see for example [12,13]).
On the other hand, a strategy based on RSS fingerprinting, where a dataset needs to be generated
during a previous learning stage for collecting RSS data throughout the environment. This dataset
is later used to compare with the RSS online measurements to estimate the location (see for
example [14]).

• Hybrid algorithms.Hybrid techniques aim is to increase the precision of the position estimates
by means of the combination of two or more of the aforementioned strategies. These methods
are typically more complex and of higher and more intensive computational cost. By way of
example, [15] reports on an EKF based on a TDOA/RSS algorithm to localize a UWB tag inside
underground mines under NLOS conditions, while [16] evaluates several TDOA algorithms and
concludes that a combination of them improves the accuracy of position estimates.

For a complete survey of UWB-based positioning algorithms, the reader is referred to [4,17,18].

3. General Overview and Methodology

The point of departure of our method is the availability of a regularly updated set of anchor-tag
ranges, so that any beacon-based positioning system able to supply these data is susceptible to adopt
our method for position estimation. This requirement is usually satisfied by UWB-based IPS vendors
(see, e.g., Pozyx (www.pozyx.io) and Decawave (www.decawave.com) TOA-based solutions).

Regarding the position estimation procedure itself, we organize it as a process involving the
following tasks (which are not sequenced in this order):

(a) Estimation of the position of the tag given a set of ranges to the anchors;
(b) Selection of the best subset of anchors to obtain the most accurate position estimation for the

estimation method;
(c) Pre-filter (denoise) the available ranges; and
(d) Post-process (filter) the estimated positions.

Our aim in this work is to address and assess the four blocks. Regarding block (a), in this paper,
we propose a novel method based on a particularization of the ICP algorithm. To properly feed this

www.pozyx.io
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block, which is detailed in Section 4, we select first the most suitable collection of anchors presumably
leading to the best position estimate, addressing thus block (b) of the previous list.

Regarding (c), the idea behind introducing a previous stage is to improve the data used as input
by the position estimation block [19]. As mentioned before, the estimated distances to the anchors can
be affected by external disturbances because of the presence of metallic elements in the environment.
For this reason, we consider the addition of a pre-processing stage to filter the distances to the anchors,
so that only good distance estimates are used within the position estimation block. The rationale
behind this is to prevent the position estimation process to provide results when the distances to the
anchors are not of sufficient quality.

The pre-filtering process that we adopt comprises two stages: A peak filter (PF) and a moving
average filter(MAF) [20,21]. On the one hand, the peak filter removes all those values whose absolute
difference with the previous value is above a certain threshold. These values are considered as peaks
and are discarded, while the surviving values are considered as valid measurements.

On the other hand, the moving average filter supplies smoothed distance estimates by computing
the mean of the N last consecutive valid ranges received. Since the ranges are required to be consecutive,
when a peak is detected, the moving average filter does not provide output values until N new
consecutive valid measures are available again.

Finally, as for (d), we adopt a post-processing stage consisting in a Kalman Filter-based strategy
for position estimates [22]. This block implements an EKF which combines position estimates with
motion data supplied by an Inertial Measurement Unit (IMU). More precisely, we make use of the IMU
orientation and linear accelerations.

As for the experimental methodology, in the experimental results section, we will consider
different configurations for the previous organization: without pre- and post- filters, with only one of
them, or with both, and at the same time using different position estimation blocks (a), being one of
them the new ICP-based method described in Section 4 and being the others each one of the different
estimation strategies based on trilateration which are reviewed in Section 5.

4. Point-to-Sphere ICP for UWB-Based Position Estimation

In this section, we propose a novel method for estimating the position of a UWB tag by means
of a modified version of the well-known ICP algorithm. To the best of the authors’ knowledge, the
ICP algorithm, which is widely used for computing the roto-translation between two point clouds
(e.g., provided by a LiDAR or from a depth camera), has never been used with data provided by a
UWB positioning system. Nevertheless, the method described in this section can also be used with
data provided by other systems based on the distances measured from a moving device to a set of
beacons situated at known locations.

Our method modifies the ICP standard algorithm by computing a point-to-sphere correspondence
between the 3D position of each anchor and the sphere defined by the distance to the anchor (i.e., the
sphere radius) and the previous known location of the tag (i.e., the sphere center). More formally, let
A = {a1, ..., aN} be the collection of N ≥ 4 anchors located at known positions {l1, ..., lN}, at let us
consider a moving tag situated at distances {r1, ..., rN} from the anchors. We next consider the set of
spheres S = {s1, ..., sN} with radius {r1, ..., rN} centred at the last known location of the tag t. Then,
the point-to-sphere ICP algorithm estimates the 3D translation of the spheres (and therefore the tag)
necessary to allow for the anchors ai ∈ A to lie on the surface of the corresponding spheres si ∈ S .

The point-to-sphere ICP algorithm proceeds similarly to the point-to-line version of ICP [23].
At each iteration j, the algorithm computes, for each anchor ai ∈ A, the point cij in the surface of the
corresponding sphere si ∈ S which is closer to the anchor location li. Being (tx, ty, tz) the coordinates
of the last known position of the tag, and (lix, liy, liz) the coordinates of the anchor ai, the coordinates
of the point cij can be computed as:
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cij , x = tx + ri cos α cos β ,

cij , y = ty + ri sin α cos β ,

cij , z = tz + ri sin β ,

(1)

where

α = tan−1 liy − ty

lix − tx
,

β = tan−1 liz − tz√
(lix − tx)2 + (liy − ty)2

.

(2)

Once all the correspondences cij have been obtained for all anchors i ∈ {1, 2, . . . , N}, we define the
set of points Cj = {c1j, ..., cNj} for the current iteration j. This set of points Cj is used next to estimate
the translation of the tag by means of least squares point-to-point distance minimization, by which
the optimum translation can be proved to be the average of distances between the anchors li and the
respective closest points cij. In the following iteration, the algorithm computes a new set of points
Cj+1, which is then used to update the translation estimate (notice that this algorithm only computes a
translation, while the point-to-line ICP algorithm computes a full roto-translation). To make all this
easier to understand, Figure 1 illustrates graphically the point-to-sphere correspondence process by
means of the 2D version (i.e., the point-to-circumference correspondence process).
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Figure 1. Example of point-to-circumference correspondences (2D case of point-to-sphere Iterative
Closest Point (ICP)). The tag moves from point A to point B, while the anchors a1, a2 and a3 are static.
c1j, c2j and c3j are the points over the three circumferences which are closer to the corresponding anchor
in the current iteration j. c1,final, c2,final and c3,final are the final correspondences after ICP convergence.

The ICP loop iterates until the update in the estimated translation is below a certain threshold, that
is, convergence is achieved, or a maximum number of iterations is reached. Considering the typically
reduced number of anchors used in UWB positioning, together with the fact that ICP can start from the
previous estimate, the point-to-sphere ICP algorithm usually converges in a few iterations—around
50, and typically less than 200 irrespective of the starting position employed (e.g., t0 = (0, 0, 0)).
A description in pseudo-code of the point-to-sphere ICP algorithm can be found in Algorithm 1.
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Algorithm 1 Point-to-sphere ICP algorithm to estimate the position of the UWB tag

1: procedure POINTTOSPHEREICP(L,R, t, δmin, max_iter)
2: L = {l1, ..., lN}: anchors’ 3D positions
3: R = {r1, ..., rN}: distances from the tag to the anchors
4: t: starting estimate of the tag position, such as the last estimate or (0, 0, 0) the very first time
5: δmin: smallest position update to iterate once more
6: max_iter: maximum number of iterations to stop ICP
7: δ← ∞, num_iter← 0
8: while (δ > δmin) and (num_iter < max_iter) do
9: C ← getClosestPoints(L,R, t) . closest points obtained from Equation (1) and (2)

10: U ← L− C . set of 3D translations required for each sphere
11: mean_update← average(U ) . average update for each axis (from closed-form
12: . solution of the underlying least-squares problem)
13: t← t+ mean_update . update the 3D position of the tag
14: δ← norm(mean_update) . L2 norm of the update vector
15: num_iter← num_iter + 1
16: end while
17: return t . return the updated 3D position of the tag
18: end procedure

Further, for higher robustness of point-to-sphere ICP, we enhance Algorithm 1 adopting a
RANSAC-like estimation strategy [24]. That is to say, we consider random sets of m ∈ {4, . . . , N}
anchors/ranges, apply Algorithm 1 to these minimum sets and determine the number of inliers among
the full set of N available anchors/ranges. For inlier definition, we use the final point-to-sphere
distance resulting for each anchor/range after ICP:

dpoint-to-sphere, i = ‖ci,final − li‖2 (3)

that is, an anchor/range ai/ri is an inlier if dpoint-to-sphere, i < τinl , for a given threshold τinl . Finally,
a set of anchors/ranges is considered the best set if it gives rise to the highest number of inliers, or,
in case of tie, the sum of point-to-sphere distances is the lowest. Once the set of best anchors/ranges
is available, we find the updated position applying Algorithm 1 to the corresponding set of inliers.
Notice that, if the number of anchors is low, one can consider all possible combinations instead of a
lower amount, as done by the original formulation of RANSAC.

To finish, it is worth mentioning that our method is also able to operate when, sporadically, less
than four ranges are available because the remaining anchors are too distant, due to the presence of
obstructing obstacles, because of punctual electromagnetic interference, etc. Under these conditions,
Algorithm 1 can employ the available ranges to estimate the position of the tag, although at the expense
of a higher error, which will depend on the number of available anchors and their locations. This makes
it possible to operate in highly dynamic environments where other UWB positioning methods can not
be used. However, although this is possible, we cancel the estimation process when not enough inliers
can be found (at least m), and the method waits for the next set of ranges, in line with the idea of only
supplying reliable position estimates.

Figure 2 depicts graphically the ICP-based algorithm, including the pre- and post-filtering stages
which would also be attached to the approaches described in Section 5.
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Figure 2. Block diagram of the full version of the ICP-based position estimation algorithm: L is the set
of anchor locations,R is the set of ranges,R+ is the set of filtered ranges, (L,R+)∗ denotes the best set
of anchors/ranges, t is the tag position, and t+ is the filtered tag position. The dashed boxes used for
the pre- and post-filtering stages denote that they can be removed. The gray box refers to the section
that would be replaced by any of the methods overviewed in Section 5. (a–d) as defined in Section 3.

5. Alternative Strategies

As alternative strategies to compare with point-to-sphere ICP, we consider three position
estimation strategies based on trilateration. Trilateration can be described as a geometric method to find
the location of a point based on the geometry of spheres, circles, or triangles. In the three-dimensional
case, this method requires the location of at least three known points (e.g., the anchors) and the
distances from all of them to the position to be determined (e.g., the UWB tag).

To solve for the position of the tag, the intersection of the spheres involved has to be found, using
the distance between the tag and the corresponding anchor as the respective sphere radius. For a
better understanding, see Figure 3, which shows this intersection for the 2D case. For the case of
three anchors, the 3D position of the tag t = (tx, ty, tz) can be computed from the equations of the
three spheres:

r1
2 = (tx − l1x)

2 + (ty − l1y)
2 + (tz − l1z)

2,
r2

2 = (tx − l2x)
2 + (ty − l2y)

2 + (tz − l2z)
2,

r3
2 = (tx − l3x)

2 + (ty − l3y)
2 + (tz − l3z)

2,
(4)

where li = (lix, liy, liz) is the location of anchor i, and ri is the distance between anchor i and the tag.

a
1

a
2

a
3

A

r
1

r
3

r
2

x

y

Figure 3. Trilateration example for the 2D case. The intersection of the three circumferences with radius
r1, r2 and r3, respectively centred at the anchors (a1, l1), (a2, l2) and (a3, l3), is used to compute the
position of the tag situated at point A.
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As already mentioned, for the comparative assessment with the point-to-sphere ICP, we
consider three alternative strategies regarding the anchor selection. They all are detailed in the
following sections.

5.1. RSS-Based Method

This method makes use of the RSS indicator to select the four anchors with highest values.
Once the spheres are selected and ordered by this indicator, the method proceeds to compute the
position of the tag from Equation (4) using the first three spheres, while the calculations for the fourth
sphere are saved if they are not necessary. Three different situations may occur when the intersection
between three spheres is considered:

1. the three spheres intersect in a single point (ideal case),
2. the circumference resulting from the intersection between the two first spheres does not intersect

with the third sphere, and
3. the circumference resulting from the intersection between the two first spheres intersects with

the third sphere at two points.

These three cases are depicted in Figure 4. In the second case, the intersection between the three
spheres is accepted when the distance between the circumference resulting from the intersection of the
first two spheres and the third sphere is below a certain threshold. Otherwise, the algorithm does not
provide solution for the given anchors and it waits for the next distance measurements. In the third
case, the algorithm selects the intersection point which is closest to the surface of the fourth sphere.
Hence, this algorithm requires at least four anchors/spheres to proceed.

1
2

3

3

3

3

Case 1

Case 2

Case 3

Figure 4. Three different cases for the intersection of three spheres.

To solve Equation (4) for the selected anchors, the anchors’ coordinates are transformed to an
auxiliary coordinate frame centred at the location of the first anchor (i.e., the anchor with the highest
RSS value) with the x-axis pointing to the second anchor, and so that the XY plane is defined with the
third anchor. After this reference frame change, the first case (i.e., the three spheres intersecting in a
single point) takes place when

r1
2 − x2 − y2 = 0, (5)

where (x, y) is the intersection point in the auxiliary coordinate frame. The second case occurs when

r1
2 − x2 − y2 < 0, (6)

and the third case takes place when
r1

2 − x2 − y2 > 0. (7)
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Notice that the intersection point (if any) is always located in the XY plane of the auxiliary
coordinate frame, and thus its z coordinate is always 0. The coordinates of the UWB tag in this
reference system can next be obtained by means of:

tx =
r1

2 − r2
2 + l2x

2

2 l2x
,

ty =
r1

2 − r3
2 + l3x

2 + l3y
2

2 l3y
− l3x tx

l3y
,

tz =
√

r1
2 − tx

2 − ty
2,

(8)

where r1 to r3 are the distances to the four anchors chosen and l2, l3 and l4 are the positions of the
second, third and fourth anchors in the auxiliary reference frame. Then, if tz 6= 0, two situations
may occur:

• r1
2 − tx

2 − ty
2 < 0 (case 2 above), that is, there is no intersection between the spheres, and

• r1
2 − tx

2 − ty
2 > 0 (case 3 above). In this case, we compute the Euclidean distance from the tag to

the fourth anchor considering the positive and negative solutions for tz, and we select the solution
which leads to the shortest distance.

Finally, the estimated position of the tag must be transformed back to the original reference system
used by the UWB device.

5.2. Minimum Discrepancy-Based Method

In this case, we apply the same steps as the RSS-based method to compute the position of the tag,
although we select the four anchors in a different way. Indeed, this method tries all the combinations
of four anchors, among all the available anchors, and selects the one which leads to the minimum
trilateration discrepancy. Considering four specific anchors, the trilateration discrepancy is computed
as the mean of the differences between the measured anchor-tag distances and the distances computed
from the estimated tag position (estimated using these four anchors) to the position of each one of
these anchors. In other words, the optimum subset B ⊂ A is such that |B| = 4 and:

B = arg min
B′⊂A

N

∑
i=1

∣∣∣ri −
(√

(tB′x − lix)2 + (tB′y − liy)2 + (tB′z − liz)2
)∣∣∣

N
, (9)

where tBx, tBy and tBz are the coordinates of the tag position estimated using the subset of anchors B
and as described in Section 5.1.

5.3. Least Squares-Based Method

Unlike the previous methods, this method makes use of all the available anchors to estimate
the position of the UWB tag. This is performed through a least squares formulation which can be
explained starting from the following equations corresponding to the N spheres:

r1
2 = (x− x1)

2 + (y− y1)
2 + (z− z1)

2,
...

rN
2 = (x− xN)

2 + (y− yN)
2 + (z− zN)

2.

(10)
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The subtraction of the last equation from the preceding ones, gives rise to the N − 1
following equations:

2(xN − x1)x + 2(yN − y1)y+2(zN − z1)z =

r1
2 − rN

2−x1
2 − y1

2 − z1
2 + xN

2 + yN
2 + zN

2,
...

2(xN − xN−1)x + 2(yN − yN−1)y+2(zN − zN−1)z =

rN−1
2 − rN

2−xN−1
2 − yN−1

2 − zN−1
2 + xN

2 + yN
2 + zN

2.

(11)

Using matrix notation, we can express the previous system of equations as:

Ap = b (12)

where

A =

 2(xN − x1) 2(yN − y1) 2(zN − z1)
...

...
...

2(xN − xN−1) 2(yN − yN−1) 2(zN − zN−1)

 ,

p =

x
y
z


and

b =

 r1
2 − rN

2 − x1
2 − y1

2 − z1
2 + xN

2 + yN
2 + zN

2

...
rN−1

2 − rN
2 − xN−1

2 − yN−1
2 − zN−1

2 + xN
2 + yN

2 + zN
2


Finally, we obtain a standard least squares problem:

min
p

(Ap− b)T(Ap− b) (13)

from which we can obtain a closed-form solution in terms of the pseudo-inverse of matrix A:

p = A+b = (AT A)−1 ATb (14)

Using this method, the solution p minimizes the root mean square error, what provides better
results in case of inaccurate distance measurements. Similarly to the previous methods, in this case we
also proceed with the calculations only when at least four anchors are available.

6. Comparative Evaluation

In this section, we report on the performance evaluation of the point-to-sphere ICP algorithm in
comparison to the trilateration-based methods reviewed in Section 5. Besides, we evaluate the effect
of introducing the pre- and post-processing stages explained in Section 3 for all position estimation
approaches described.

For this evaluation, we have used the Pozyx Creator UWB kit (www.pozyx.io/products-and-
services/creator), for a total of eight anchors, which have been placed on the walls surrounding the
testing area. Further, two different environments have been considered: inside a laboratory and in a
noise-prone environment. In the laboratory experiments, we employ δmin = 0.05 (m) and max_iter =
200 (both from Algorithm 1), while δmin = 0.03 (m) and max_iter = 300 for the noise-prone environment
experiments. In all cases, an anchor/range is considered an inlier within RANSAC according to
τinl = 0.5 (m).

www.pozyx.io/products-and-services/creator
www.pozyx.io/products-and-services/creator
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These environments, and the experiments carried out, are detailed in the following sections.

6.1. Laboratory Experiments

The laboratory experiments have been carried out within a 10 m × 5 m × 5 m (L × W × H)
volume inside the Aerial Robotics Lab, at the University of the Balearic Islands. The eight anchors have
been placed on the walls and floor of the laboratory, at heights ranging from 0 to 4 m. This laboratory is
equipped with a motion tracking system which is able to provide very accurate motion estimation, and
thus can be used as ground truth data for the UWB tag position during the evaluation. For performance
assessment purposes, we considered three different trajectories:

• Trajectory 1—a rectangular trajectory of 5 × 2 m, performed at a constant height;
• Trajectory 2—a figure-eight-like trajectory of 5 × 2 m, performed at a constant height; and
• Trajectory 3—a rectangular trajectory of 5 × 2 m changing the height of the tag, where the height

was 2.5 m for the two longer transects and 1.5 m for the two shorter transects.

These datasets have been generated by following the intended trajectories and manually holding
the UWB tag with motion tracking markers attached to it. For further insight, Table 1 reports on the
amount of noise in the tag-anchor ranges as supplied by the UWB kit for the eight anchors and the three
different motion paths followed during the laboratory experiments. Toward this end, we determined
the discrepancy between the ranges measured by the anchors and the true ranges calculated by means
of the available ground truth motion data. The table shows, on an anchor-by-anchor basis, the average
discrepancy and the corresponding standard deviation (as statistical measures of the ranges’ noise)
and the maximum discrepancy (to illustrate worst cases), all for each anchor independently in order to
account for favourable/non-favourable anchor placement during the experiments. As can be observed,
the average error was up to around 10 cm, while the worst errors reached several meters.

Table 1. Discrepancy between true tag-anchor ranges and measured ranges as supplied by the UWB
kit involved in the laboratory experiments. All values are in meters.

Anchor
Trajectory 1 Trajectory 2 Trajectory 3

Mean Std. Dev. Max. Mean Std. Dev. Max. Mean Std. Dev. Max.

0 0.135 0.508 4.795 0.072 0.061 0.364 0.135 0.391 4.166

1 0.176 0.559 6.502 0.089 0.090 0.396 0.147 0.415 3.994

2 0.064 0.045 0.218 0.075 0.054 0.225 0.118 0.536 6.681

3 0.076 0.067 0.450 0.106 0.076 0.457 0.115 0.256 3.173
4 0.043 0.025 0.111 0.054 0.044 0.231 0.118 0.452 5.636

5 0.060 0.032 0.138 0.092 0.117 0.685 0.050 0.034 0.162

6 0.095 0.059 0.294 0.093 0.073 0.377 0.152 0.663 6.628

7 0.088 0.304 3.483 0.140 0.462 3.693 0.091 0.086 0.376

In the following sections, we make use of the notation described next to refer to the different
methods and data:

• The trilateration methods are denoted as T_RSS, T_MIN and T_LS, for, respectively, the RSS-based
method, the minimum discrepancy-based method and the least squares-based method;

• The point-to-sphere ICP-based method is referred to as ICP;
• The position estimates provided by the Pozyx kit itself are denoted as POZYX; and
• The ground truth data supplied by the motion tracking system is labelled as GT.

During the laboratory experiments, the position estimation methods are evaluated for three
different configurations: (1) standalone configuration (i.e., without pre- and post- filtering), (2) adding
the pre-filtering stage, and (3) incorporating both the pre-filtering and the post-filtering stages.
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6.1.1. Results Using the Standalone Configuration

Figure 5 shows the position estimation results obtained with the different methods, when these
are used in standalone configuration. These results correspond to the rectangular trajectory, while the
results provided through Figures 6 and 7 correspond to, respectively, the figure-eight-like trajectory
and the rectangular trajectory with changes in height. As can be seen in the three figures, in the
laboratory, most of the methods present similar performances. Nevertheless, the T_RSS method leads
to considerably noisier position estimates (in the figure, these are provided separately for a better
visualization of the position estimates resulting from the rest of methods).

(a) (b)

(c) (d)

Figure 5. Position estimations provided by the different methods for the rectangular trajectory
using the standalone configuration, results for the T_RSS method are shown separately to facilitate
the comparison: (a) perspective and (b) top views for T_MIN, T_LS, POZYX and ICP, (c) perspective
and (d) top views for T_RSS.
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(a) (b)

(c) (d)

Figure 6. Position estimations provided by the different methods for the figure-eight-like trajectory
using the standalone configuration, results for the T_RSS method are shown separately to facilitate
the comparison: (a) perspective and (b) top views for T_MIN, T_LS, POZYX and ICP, (c) perspective
and (d) top views for T_RSS.

Table 2 quantitatively compares all methods for the rectangular trajectory inside the laboratory.
The table reports on different metrics about the difference between position estimates and the
GT data supplied by the motion tracking system, namely the mean, the standard deviation, the
Root-Mean-Square Error (RMSE), the median, and the 90th, 95th, and 98th percentiles of the error [25].
Referring to the results obtained for the standalone configuration of each method, Table 2 shows
that the performance of the ICP-based method is comparable to those of POZYX and T_MIN. It is
worth noting that ICP leads to the lowest standard deviation and the lowest errors at 95th and 98th
percentiles. Among the trilateration-based methods, T_MIN gives rise to the best results, followed by
T_LS and, finally, T_RSS. This indicates that the selection of the anchors plays an important role: on the
one hand, the subset of anchors which minimizes the trilateration error (used by T_MIN) seems to lead
to better performance than considering all the anchors (as in T_LS), probably because the distance to
some of the anchors is incorrectly estimated, possibly due to interferences from, for example, metallic
elements in the walls and the floor. On the other hand, RSS does not seem to be the best indicator for
selecting the anchors.
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(a) (b)

(c) (d)

Figure 7. Position estimations provided by the different methods for the rectangular trajectory
with changes in height using the standalone configuration, results for the T_RSS method are shown
separately to facilitate the comparison: (a) perspective and (b) top views for T_MIN, T_LS, POZYX and
ICP, (c) perspective and (d) top views for T_RSS.

Similarly, Table 3 shows performance data for the figure-eight-like trajectory. When considering
the standalone configurations, we can observe that the ICP-based method leads to the best values for
all the metrics considered. Regarding the trilateration-based methods, the performance presented by
these methods agree with what we have observed for the previous experiment, what reinforces our
hypothesis about the importance of the anchors selection.

Finally, Table 4 reports on the third kind of trajectory, where the rectangular path is followed at
different heights. Again, regarding the standalone configurations, the results of the ICP-based method
are better than those for the three trilateration-based methods considered in this study.

6.1.2. Results after Adding the Pre-Filtering Stage

Figure 8 shows the estimated trajectories corresponding for the same three paths, but incorporating
the pre-filtering stage to filter the anchor-tag distances. As can be observed, all the position estimates
provided by the different methods now look smoother, being T_RSS the method which is more favored
by the addition of this stage.

Regarding the numerical values of Tables 2–4, we can observe that the use of the pre-filtering
stage leads, in general, to lower values of the different metrics for all the methods considered.
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Table 2. Performance data for the rectangular trajectory. Values in red denote the three best values for
each metric. All values are in meters.

Method Configuration Mean Std. Dev. RMSE Median 90th per. 95th per. 98th per.

POZYX — 0.113 0.053 0.125 0.105 0.203 0.213 0.221

standalone 0.231 0.120 0.260 0.234 0.372 0.479 0.553

T_RSS pre-filter 0.191 0.112 0.221 0.191 0.283 0.356 0.425

pre- & post-filter 0.182 0.087 0.202 0.187 0.288 0.326 0.371

standalone 0.117 0.056 0.129 0.116 0.179 0.207 0.249

T_MIN pre-filter 0.118 0.052 0.129 0.119 0.190 0.206 0.229

pre- & post-filter 0.119 0.048 0.128 0.120 0.183 0.203 0.231

standalone 0.126 0.069 0.144 0.117 0.228 0.262 0.305

T_LS pre-filter 0.124 0.048 0.133 0.118 0.193 0.235 0.243

pre- & post-filter 0.132 0.049 0.141 0.131 0.199 0.246 0.249

standalone 0.121 0.045 0.129 0.125 0.180 0.189 0.195

ICP pre-filter 0.121 0.034 0.125 0.121 0.162 0.165 0.170

pre- & post-filter 0.123 0.039 0.129 0.124 0.172 0.176 0.180

Table 3. Performance data for the figure-eight-like trajectory. Values in red denote the three best values
for each metric. All values are in meters.

Method Configuration Mean Std. Dev. RMSE Median 90th per. 95th per. 98th per.

POZYX — 0.110 0.044 0.119 0.114 0.166 0.181 0.191

standalone 0.501 0.830 0.969 0.281 0.827 1.239 4.012

T_RSS pre-filter 0.236 0.100 0.256 0.234 0.371 0.389 0.464

pre- & post-filter 0.239 0.112 0.264 0.240 0.395 0.418 0.442

standalone 0.118 0.068 0.136 0.112 0.213 0.251 0.287

T_MIN pre-filter 0.111 0.044 0.119 0.109 0.173 0.183 0.193

pre- & post-filter 0.112 0.050 0.122 0.111 0.180 0.197 0.211

standalone 0.125 0.076 0.147 0.111 0.235 0.255 0.315

T_LS pre-filter 0.122 0.066 0.138 0.100 0.226 0.237 0.243

pre- & post-filter 0.119 0.070 0.139 0.102 0.217 0.259 0.279

standalone 0.081 0.043 0.092 0.075 0.139 0.162 0.189

ICP pre-filter 0.078 0.046 0.090 0.066 0.142 0.176 0.181

pre- & post-filter 0.090 0.050 0.103 0.091 0.165 0.194 0.200

Table 4. Performance data for the rectangular trajectory with changes in height. Values in red denote
the three best values for each metric. All values are in meters.

Method Configuration Mean Std. Dev. RMSE Median 90th per. 95th per. 98th per.

POZYX — 0.103 0.060 0.119 0.100 0.180 0.211 0.250

standalone 0.641 0.990 1.179 0.265 1.880 2.511 3.642

T_RSS pre-filter 0.238 0.241 0.339 0.187 0.389 0.499 1.288

pre- & post-filter 0.196 0.126 0.233 0.176 0.334 0.401 0.548

standalone 0.120 0.080 0.145 0.102 0.212 0.269 0.344

T_MIN pre-filter 0.116 0.081 0.142 0.102 0.216 0.258 0.354

pre- & post-filter 0.129 0.083 0.153 0.112 0.247 0.300 0.327

standalone 0.125 0.081 0.149 0.114 0.227 0.290 0.355

T_LS pre-filter 0.116 0.079 0.141 0.105 0.208 0.251 0.352

pre- & post-filter 0.133 0.084 0.157 0.118 0.259 0.299 0.342

standalone 0.117 0.064 0.134 0.110 0.185 0.211 0.266

ICP pre-filter 0.109 0.055 0.122 0.107 0.188 0.198 0.208

pre- & post-filter 0.126 0.064 0.142 0.116 0.213 0.229 0.255
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Position estimations provided by the different methods for the three trajectories performed
inside the laboratory, results obtained using the pre-filtering stage: (a) perspective and (b) top views
for the rectangular trajectory; (c) perspective and (d) top views for the figure-eight-like trajectory;
(e) perspective and (f) top views for the rectangular trajectory with changes in height.

6.1.3. Results after Adding the Pre- and Post-Filtering Stages

Figure 9 plots the estimated trajectories for the tree experiments carried out in the laboratory for
the full configurations. In comparison with the trajectories plotted in Figure 8, the addition of the
post-filtering stage leads to smoother trajectories, as expected.
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(a) (b)

(c) (d)

(e) (f)

Figure 9. Position estimations provided by the different methods for the three trajectories performed
inside the laboratory, results obtained using both the pre- and post-filtering stages: (a) perspective and
(b) top views for the rectangular trajectory; (c) perspective and (d) top views for the figure-eight-like
trajectory; (e) perspective and (f) top views for the rectangular trajectory with changes in height.

Looking at the numerical performance data shown in Tables 2–4, one can observe that the
results obtained after adding the EKF at the output of the pipeline are similar to the ones obtained
using only the pre-filtering stage, or even slightly worse in some cases (probably due to the inherent
delay introduced by this kind of filters). In any case, the performance of the post-filtering stage is
expected to be more notorious in a non-UWB-favorable environment, where the incorporation of data
from other sensors (e.g., an IMU) can really benefit position estimators with regard to using purely
UWB-based methods.

6.2. Experiments in a Noise-Prone Environment

In this section, we report on some field experiments which have been carried out in one of the
cargo holds of a Ro-Ro type vessel (typically intended for transporting cars, trucks, etc.). As a merchant
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ship, the cargo holds consist in metallic boxes, so that this kind of environment can be considered as a
noise-prone scenario for a UWB positioning system.

Figure 10 plots the results obtained from the different UWB methods during a rectangular
trajectory and a figure-eight-like trajectory, both performed inside one of the cargo holds of the
aforementioned ship. All methods have been configured to make use of both the pre- and post-filtering
stages. The performance exhibited in general for the other configurations (i.e., standalone and
using only the pre-filtering stage) can be reported to be of low quality, in accordance to such noisy
environment. In all plots, we make use of the trajectories labelled as GT in Figure 10 as reference
trajectories for qualitative comparison, since, inside the cargo hold, there was no way to have access to
accurate positioning data such as the ones provided by the motion tracking system of our laboratory.
These reference trajectories were manually planned by means of a measuring tape and tracked during
the experiments using reference lines painted on the floor. In the same way as for the laboratory
experiments, the position estimates supplied by the manufacturer’s software are also shown in
Figure 10 and labelled as POZYX.

(a) (b)

(c) (d)

Figure 10. Position estimations provided by the different methods for the two trajectories
performed inside the vessel hold, results obtained using both the pre- and post-filtering stages:
(a) perspective and (b) top views for the rectangular trajectory; (c) perspective and (d) top views
for the figure-eight-like trajectory.

As can be observed, the only methods which are able to adhere to the ground truth are T_MIN
and ICP, being the latter the method which behaves better. The good performance of these methods
is partially due to the good selection of the subset of anchors. The T_LS method is able to follow the
trajectory most part of the time, but at certain points suffers from some large deviations due to the use
of anchors whose range has been poorly estimated. As happened for the laboratory experiments, T_RSS
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gives rise to the worse results, which in this case cannot be sufficiently improved after incorporating
the pre- and post-filtering stages. A special mention is made to the quality of the POZYX estimates,
which are severely affected by the metallic environment, as already warned by the manufacturer.

7. Conclusions and Future Work

In this work, we have presented a novel method for UWB-based position estimation by means
of point-to-sphere ICP. The method has been described and its performance has been compared
with alternative position estimators based on trilateration. During the development of the proposed
method, and the subsequent comparative evaluation, one of our concerns has been the quality of the
anchor-tag distance estimations and thus to establish an adequate anchor selection process. Following
with this, we have also considered as part of the performance evaluation the effect of incorporating
a pre-processing stage that filters and improves the quality of the range estimates, which are in turn
used as input for the position estimation method. Similarly, we have also evaluated the incorporation
of a post-processing stage that filters the position estimates by means of non-linear Kalman filtering.

We have reported results for laboratory and field experiments, showing the good performance of
the point-to-sphere ICP-based method, which outperforms the alternative position estimation methods
considered in the paper. The results also allows us to confirm the importance of the anchors selection
step: among the trilateration-based methods, T_MIN has led to the best performance in all experiments,
since this method selects the subset of anchors which minimizes the trilateration error. A similar idea
is implemented within the point-to-sphere ICP-based method, where RANSAC is used to choose the
subset of anchors which provides the lowest global error.

The results of the experiments using the pre-filtering stage indicate that this step is useful to
improve the range estimates that are subsequently used by all the methods evaluated. On the other
side, the post-filtering stage based on an EKF has proved useful when the UWB devices are operating
within a noisy environment, where data provided by other sensors can contribute to obtain more
accurate position estimates.

Regarding the computational cost of the ICP-based approach, we have observed that, for the
configurations we have considered, convergence is attained after a few iterations—around 50 if the
previous estimate is used, and less than 200 irrespectively of the starting estimate—, what, in a
standard computer, means execution times of the order of milliseconds, a time-lapse comparable to the
computation time of the other methods involved in the comparison. Increasing the number of anchors
will make the computational cost increase as well, although normally the bottleneck is rather on the
time needed to collect the ranges from the different anchors instead of on the calculations.

Like any other UWB-based positioning method, the point-to-sphere ICP-based method can be
affected by poor positioning of the anchors, what in turn can result in an ill-conditioned problem.
Since our method is based on ICP, it may need some additional iterations to converge when the anchors
are not properly situated. In this case, the update in the position estimate between iterations can be
rather small, so that, depending on the stopping conditions used in the ICP loop, the algorithm might
decide that convergence conditions are met and stop prematurely, giving rise to inaccuracies in the
position estimates.

As for future work, we plan to improve the estimation of the tag’s height by tolerating better
the lack of variation in the anchors heights, by means of the incorporation of additional sensors into
the data fusion step. In particular, we are concerned with the use of the point-to-sphere ICP-based
method for estimating the 3D position of a Micro-Aerial Vehicle (MAV) and, hence, the enhancements
in height estimation can greatly contribute to improving the performance of the full system as a whole.
The integration of the point-to-sphere ICP into a SLAM solution which is currently under development
is another item which will be part of future–though relatively immediate–work.
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MaRS: A Modular and Robust Sensor-Fusion
Framework

Christian Brommer1, Roland Jung2, Jan Steinbrener1, and Stephan Weiss1

Abstract—State-of-the-art recursive sensor filtering frame-
works allow the fusion of multiple sensors tailored to a specific
problem but do not allow a dynamic and efficient introduction
of additional sensors during runtime - an important feature to
enable long-term missions in dynamic environments. This paper
presents a robust, modular sensor-fusion framework that enables
the addition and removal of sensors at runtime. These sensors
could be not a priori known to the system. The framework handles
the complexity of system and sensor initialization, measurement
updates, and switching of asynchronous multi-rate sensor in-
formation with sensor self-calibration in a truly modular and
generic design. In addition, the framework can handle delayed
measurements, out-of-sequence updates, and can monitor sensor
health. The introduced true-modularity is based on covariance
segmentation to allow the isolated (i.e., modular) processing of
propagation and updates on a per-sensor basis. We show how
crucial properties of the overall state covariance can be main-
tained as naive implementation of such a modularization would
invalidate the covariance matrix. We evaluate our framework for
a precision landing scenario switching between combinations of
GNSS, barometer, and vision measurements. Tests are performed
in simulation and in real-world scenarios to show the validity of
the introduced method. The presented framework will be open-
sourced and made available online to the community.

Index Terms—Sensor Fusion, State-Estimation, Modularity,
Autonomous Navigation

I. INTRODUCTION

STATE-Estimation is an essential part of robotics and
engineering. The accurate knowledge of the location of

a robotic platform in the world is crucial for navigation,
control, and manipulation. Dedicated estimators are repeat-
edly developed, and most existing approaches are tailored to
accomplish a specific task on specific hardware under specific
conditions, limiting re-usability if the scenario, sensor suite,
or the platform changes. Current open-source and state-of-
the-art Extended Kalman Filter (EKF) frameworks start to
address this issue, but they are designed to handle a setup
of sensors that is pre-defined during the compilation time or
start-up phase of the filter. The reference frames of additional
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Fig. 1. True modularity. Left: Structure of a state-of-the-art multi-sensor
fusion approach. The covariance matrix is always fully updated. Right:
Modular segmentation of the update and propagation process. Only the core
and currently active sensor state covariance is used to perform the update.

sensors are also often pre-defined and are not dynamically
adapted to the current situation. Such frameworks do not allow
the initialization of sensors during runtime, especially if the
sensor definition is not a priori known to the system. This
limits their application to static hardware configurations and
does not support novel applications with modular platforms
that can be extended during runtime with sensor modules not
known to the core framework (e.g., connectable snake robots
or humanoids with exchangeable end-effectors).

A major challenge is that additional sensors require ad-
ditional calibration states because they are rarely aligned
with the robot’s estimated body frame, nor are they in-
trinsically calibrated. Therefore, the number of calibration-
states increases with the number of sensors. An increasing
number of states requires more operations to perform the
estimation (e.g., for propagation and updates in filter-based
estimates). The processing time of a naive estimator increases
cubically O(n3) with the number of sensors n due to matrix
multiplications. This effect is even worse for delayed and out-
of-sequence measurements in a multi-sensor system because
delayed signals trigger numerous re-computation steps should
the estimator remain credible. Hardware synchronization can
mitigate this issue, but it may not always be possible (partic-
ularly with dynamic sensor rates). While non-recursive filter
formulations (e.g., graph optimization-based) have been shown
to be able to initialize previously unknown sensors during
runtime, their computational load makes them ill-suited for ex-
ecution on resource-constrained platforms such as Unmanned
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Fig. 2. Estimated state variables with self-calibration are shown as dotted
lines; measurements and one fixed global reference frame (e.g. Global
Navigation Satellite System (GNSS)) are shown as continuous lines.
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Aerial Vehicles (UAVs). Here, we present a recursive, unified,
and modular multi-sensor-fusion framework with support for
efficient, multiple asynchronous updates resulting in constant
complexity independent of the number of sensors. It further
provides generalized interfaces that allow an easy exchange of
components between projects and collaborators. The contribu-
tions of this work are the following:
• The design and implementation of a truly modular multi-

sensor fusion framework as a recursive filter with the
capability of on-line addition of previously undefined sen-
sors with delay and asynchronous measurements. These
sensors will be self-initialized and self-calibrated based
on their extrinsic states, which are added to the system.

• A novel approach for correct covariance segmentation,
which preserves the properties of a covariance matrix
throughout the isolated processing of individually joined
segments. This renders the framework both consistent
and computationally tractable on constrained platforms:
the complexity depends only linearly on the number of
sensors and the propagation step constant/independent of
the number of sensors.

• Statistically relevant tests in simulations and verification
of the proposed framework with real data.

On-line sensor addition is achieved by decoupling the navi-
gation states (e.g., position, velocity, and attitude for a mobile
system) from calibration states of individual sensors (e.g.,
the transformation between sensor and agent body frame).
This allows the introduction of a sensor-update-module during
runtime (e.g., through independently launchable nodelets in
a Robot Operating System (ROS) environment). Our design
also accounts for offsets between global and local references
maintaining smooth state evolution upon inclusion of a new
reference frame. To maintain consistency despite this modu-
larization, we introduce a covariance segmentation approach,
which retains the filter’s credibility, to correctly propagate
isolated covariance components by maintaining fundamental
properties of covariance matrices. This is crucial for the correct
application of propagation and update steps. A naive approach
would result in ill-conditioned covariances. The presented
approach reduces the complexity of updates and renders the
processing time of the propagation as well as the update phase
constant and independent of the number of sensors.

The approach provides continuous self-calibration (see
Fig. 2) while keeping maximum flexibility at a low computa-
tional cost. We validate the proper propagation of information
(i.e., observability properties), the credibility of the overall
approach, and the performance with a statistically relevant
number of simulations. We illustrate the feasibility of our
approach for computationally-constrained platforms with real-
world experiments and an UAV. The experiments are per-
formed with Inertial Measurement Unit (IMU) driven dynam-
ics; however, different dynamic formulations are possible, and
the framework can, of course, be deployed on other platforms,
not limiting the contribution to UAVs.

II. RELATED WORK

State estimation with pre-defined sensor suites and com-
plementing calibration states, including self-calibration and

delay compensation with multi-sensor rates, have been studied
thoroughly in literature. The Single Sensor Fusion framework
(SSF) presented by [1] covers the topics of online self-
calibration and accurate handling of sensor delays (out-of-
sequence updates). An extended version of SSF was used by
[2] in a multi-sensor setup for long-duration autonomy. The
Multi-Sensor Fusion framework (MSF) has been introduced by
[3], and [4] has presented similar work that details relative and
absolute sensor updates using local vision updates and global
position information as an example. While both frameworks,
SSF, and MSF can accommodate sensor outages, the work
of [5] extended the MSF framework and studied the topic
of online sensor initialization and switching based on sensor
availability and health metrics.

[6] introduced a method for the handling of delayed mea-
surements, designed for computationally-constrained embed-
ded systems. [7] presented a generalized extended Kalman fil-
ter implementation based on ROS. This framework defines its
sensor structure during startup but does not allow modification
of the setup during runtime. Sensor measurements are assumed
to be expressed in the robot’s origin. The framework does
not introduce sensor calibration states and does not perform
online self-calibration. It neither estimates Gyroscopic biases
for the IMU, and the process noise of the system is tuned
by hand. The method presented here goes further and allows
the incorporation and removal of sensors that are not a priori
known to the system during runtime by decoupling the core
states from the sensor states. This allows a decentralized yet
tightly-coupled processing of sensor information.

The work of [8] describes the state-of-the-art centralized
and decentralized sensor-fusion for driver-assistance systems
and discusses the current challenges of this approach. In short,
centralized approaches allow tightly-coupled estimation but
require high communication bandwidth. Existing approaches
are also hard to extend and require extensive workload for
the implementation of new sensor instances. State-of-the-art
decentralized systems make use of loosely-coupled sensor
integration, which has the disadvantage of inconsistencies
because of inadequate handling of the sensor and core states
cross-covariances. The focus of the presented work relies
specifically on modularity and consistency/credibility; how-
ever, it will also benefit the development of decentralized
systems (e.g., swarms). It allows tightly-coupled sensor-fusion
with reduced bandwidth between system components because
the states of a sensor instance can be stored and processed
locally. It further simplifies the development and extension
of systems by minimizing the workload for integrating new
sensors and allows online retrofitting.

The work of [9] and [10] studied the modularization
of multi-sensor fusion and presented a vector graph-based
method which employs a real-time batch optimization process.
Both authors’ work focuses on the optimal and the minimal
selection as a subset of the given sensor suit and covers
observability for sensor selection. The authors perform plug
and play experiments by abstracting the sensor to avoid the
direct use of physical measurements. It is important to note
that the use of vector graph-based methods is limited in terms
of scalability, especially in combination with computationally-
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constrained resources. The presented work is different because
it focuses on a truly modular approach with a recursive
filtering technique. The presented approach minimizes the size
of covariance matrices, reducing the number of mathematical
operations and increasing performance/scalability. To the best
of our knowledge, no truly modular recursive filter approach,
as presented in this paper, has been reported in the literature.

III. METHOD

A. Truly Modular Sensor Fusion
Recursive filters such as EKFs require all states and co-

variances during the update and propagation phase. A typical
setup of a filter for estimating a system, defines core states that
describe the essential variables of a platform that are necessary
for propagation and to perform controls. We use the core
state definition established by [1] and shown by Equation (1).
The essential core states are the translation from the world
to the IMU/body frame WpWI ≡ pWI expressed in the world
frame, velocity vWI , the orientation of the IMU in the world
frame qWI , gyroscopic bias bω and accelerometer bias ba,
with CpAB = R(qCA)ApAB and R(qCA) ≡ RCA.

XC =
[
pT

WI ,v
T
WI ,q

T
WI ,b

T
ω,b

T
a

]T
(1)

Generally, for mobile systems, the state and covariance
can be propagated by an IMU driven and time-dependent
dynamic model. The following differential equations govern
the state-dynamics, with Ω(ω) being the right side Quaternion
multiplication matrix for ω, gravity expressed in the world
frame g, and nba , nbω being zero mean white Gaussian noise
of the accelerometer and gyroscope measurements.

ṗWI = vWI (2)
v̇WI = R(qWI)

(am − ba − na)− g (3)

q̇WI =
1

2
Ω(ωm − bw − nw)qWI (4)

ḃω = nbω
, ḃa = nba

. (5)

If the system provides additional sensors, they are likely
not aligned with the center of the platform. The extrinsics of
individual sensors can be implemented as calibration states
and may be estimated online. Given a system with e.g., two
additional sensors S1 and S2 the core state can be augmented
with their extrinsic calibration states accordingly

X =
[
XC; XS1 ; XS2

]
. (6)

The observation of additional sensors introduces cross-
correlations between the core and sensor states, resulting
in cross-covariances in the covariance matrix P. The joint
covariance matrix after sensor observations is

P =
PC PCS1

PCS2

PS1C PS1
0

PS2C 0 PS2


 , (7)

with PCS2
= (PS2C)T and sensors S1 and S2 assumed to be

independent to each other.
Starting from this structure, we propose a segmentation

approach that isolates the core and sensor covariance compo-
nents. Performing the propagation on the isolated core states

Core State Propagation
t=10...20

Previously initialized
core and sensor states

Update of Sensor 1
t=21

Core State Propagation
t=22...25

PS1PS1 C

PC S1

t=5

PC

t=20

t=21Sensor 1
Covariance Correction

Core State Propagation

t=27...30

Update of Sensor 2
t=26

Update of Sensor 1
t=31

PC

PS2PS2 C

PC S2

t=9

t=25

Covariance Correction
t=26Sensor 2

Covariance Correction

PC

PS1PS1 C

PC S1

t=31

t=30

t=31Sensor 1

Systematic Overhead
Core State Covariance
Sensor 1 Covariance
Sensor 2 Covariance

Fig. 3. The figure shows a representative sequence for the truly modular
filter process with two sensors. The covariance correction element performs
two steps, first the generation of the state-transition blocks for the propagation
of the sensor covariance, and second, the Eigenvalue covariance correction.
Please note that the sensor covariance and cross-covariance (orange and purple
boxes) are stored at the time of their update and do not evolve over time until
their next update. Sensor measurements occur at t = 21, 26, and 31s.

reduces the size of the covariance matrix, minimizing com-
putational effort. A possible filtering routine with covariance
segmentation for a two-sensor scenario is shown by Figure 3.

The scenario describes the filtering procedure for a time
section between t=0 s and 31 s. The filter is initialized at t=0 s,
two sensors have been added and initialized during runtime, S1
at t=5 s, and S2 at t=9 s. The covariance handling is performed
as follows: The core covariance and states are propagated
separately in the time t=10 s and 20 s. Sensors S1 and S2 have
not been part of this propagation. S1 provides a measurement
at t=21 s; at this point, the latest sensor covariance PS1 and
cross-covariance with the core states PCS1 at t=5 s (orange
segment) is joined with the latest core state covariance PC at
t=20 s, and the update for t=21 s is performed. The sensor
covariance PS1 and sensor/core cross-covariance PCS1 is
separated from the core covariance PC afterwards and stored
until the next update of S1 at t=31 s.

The core state is propagated until the measurement update
of S2 at t=26 s, and the latest covariance segments PC of the
core (t=25 s) and S2 (t=9 s) are used for the update at t=26 s.
At this point, the process continues with the same procedures:
the propagation of the isolated core covariance PC and the
update of individual sensor states with the core. One important
aspect is that measurement updates of one sensor are separated
from the state of any other sensor (see Eq. (7)). This is one of
the key components of the introduced covariance segmentation
that allows true modularity. The routine shows that any sensor
can be added or removed without interfering with other sensor
covariances. We call this truly modular since only the minimal
representation of the current state, and covariance segments are
joined for a particular update or propagation.

B. Consistent Truly Modular Covariance Estimation

The described covariance segmentation introduces two prob-
lems. Due to this approach, two or more sensors are never
updated in the same step, and thus, no cross-covariance
terms between sensors are generated. We make the design
choice that the cross-covariance between any sensor states
are zero (see Eq. (7)). Thus, all additional auxiliary states of
individual sensors are independent, but the covariance of an
individual sensor and its cross-covariance with the core state is
maintained (see Fig. 1). An intuitive physical example can be
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given by using a 3DoF magnetometer and 3DoF GNSS sensor.
The rotational calibration of the magnetometer with respect to
the IMU and the translation of the GNSS with respect to the
IMU do not have a physical relation. Although these cross-
covariance do exist from an analytical point of view; they
are negligible as the experiments in Section IV-A validate.
Thus, negligible losses in accuracy allow vast performance
improvements given the gained recursive modularity.

The second problem is the validity of the covariance matrix
for the joined covariance segments. The covariance segments
were calculated for different points in time and do not include
the same amount of sample data, which leads to non-positive-
semidefiniteness. Thus, we propose pre-update routines to
reintroduce the information that was not handled during the
propagation and individual update phases. We then select the
closest valid (positive-semidefinite) covariance matrix from
this augmented matrix.

1) Propagation: The information that each isolated sensor
component was missing during the propagation phase can be
fetched and propagated forward consistently to the current
update step. In [11] it is shown that the cross-covariances can
be independently propagated using the state-transition matrix
series. The state-transition matrix series Φ(m,n) between two
time instances t(m) and t(n) is defined as

Φ(m,n) = ΦnΦn−1 . . . Φm with t(m) < t(n), (8)

with Φk as the discrete state-transition matrix Φk|k−1 that en-
codes the state dynamic, evaluated based on the system input,
and integrated for the propagation step δt = t(k) − t(k − 1).
The corresponding cross-covariance PCS between core C and
sensor S can be propagated from the time instance t(m) until
t(n) with

PCS,n(−) = ΦC(m,n)PCS,mΦS(m,n)
T
, (9)

ΦC(m,n) being the state-transition matrix series of the core
and ΦS(m,n) for the sensor state. Storing a history of
state-transition matrices, allows the generation of a state-
transition matrix series to propagate sensor covariance and
cross-covariance between core and sensor states. The sensor
covariance PCS inherits the information that was not intro-
duced while the core PC was propagated in isolation. This
on-demand information inheritance allows to only compute
the core states at each propagation step, keeping this step at
constant complexity independent of the number of sensors, but
requires a computational spike for the pre-update step.

2) Updates: [11] also showed that indirect observations
affect core and sensor states because of cross-correlations
between the core and individual sensor states. This means that
a sensor observation, e.g., provided by S1, results in an update
and correction of states correlated with the core state e.g.,
those of S2. Due to this, sensor covariances can usually not
be removed and reintroduced directly. Considering Figure 3,
the removal of a previously introduced sensor S1 at t=21 s and
its reintroduction at t=31 s after other measurement updates
have been performed (S2 at t=26 s), invalidates the covariance
matrix, which becomes non-positive semidefinite and is called
a pseudo covariance matrix. This non-continuous evolution of

the segmented covariance matrix can be corrected by enforcing
the required properties of covariance and correlation matrices,
respectively. Covariance matrices are symmetric and positive-
semidefinite P ∈ Sn

+, which ensures that its correlations
are coherent, but it is not guaranteed that the combination
of covariance segments, as described above, satisfies this
property. As an example: Given the covariance matrix P
in Equation (10): Let PAB and PBC be a positive cross-
covariance between the states. Due to this relation, PAC needs
to represent a positive correlation as well.

P =


PCA

PBA

PA

PCB

PB

PAB

PC

PBC

PAC
 ∈ Sn

+ (10)

A covariance correction step needs to be applied to accom-
modate this issue. [12] and [13] discuss a variety of methods
to estimate the nearest positive-semidefinite covariance matrix
of a given pseudo covariance matrix. The more interesting
approaches are the Eigenvalue method and the Scaling/Hy-
persphere decomposition with angular parametrization, which
have not been applied to the field of state-estimation to our
knowledge.

The scaling method uses an optimization process to min-
imize the Frobenius distance (lower caps are the scalar ele-
ments of a matrix) A =

∑n
i

∑n
j (pi,j−p̃i,j)2 with respect to a

given covariance matrix where P is the true covariance matrix
and P̃ is the closest approximation. The Eigenvalue method
approximates a positive-semidefinite matrix by correcting neg-
ative Eigenvalues. [14] proves that the Eigenvalue method
also minimizes the Frobenius norm. Due to its deterministic
nature and the lower complexity, the Eigenvalue method is
the preferred choice for the presented real-time estimation
problem. To perform the Eigenvalue correction, the first step
is to decompose the covariance matrix P = DEDT that
needs to be adapted. E is a diagonal matrix with Eigenvalues,
and D are the Eigenvectors. If the covariance matrix is non-
positive-semidefinite, then a subset of the Eigenvalues E(<0)

is negative. These can be corrected by performing the:
• Absolute Eigenvalue correction (ABS), to preserve the

dimension that is spanned by the Eigenvectors.
• Zero Eigenvalue correction (Zero), performing the mini-

mal change required to gain a positive determinant, and
• Delta Eigenvalue correction (Delta), which sets the neg-

ative Eigenvalues to a positive empirical parameter.
The covariance matrix is then constructed based on the cor-
rected Eigenvalues and can be used to update the recursive
filter. The three methods are applied for the framework and
evaluated in Section IV-A.

C. Implementation

The framework is structured in logical blocks (see Fig. 4)
that represent the system design. Each component is self-
contained with clearly defined interfaces for exchangeability.
The core logic handles the organizational part of the frame-
work and is the bridge between the buffer (see Fig. 5) and all
sensor components. Its high-level logic determines if measure-
ments are still valuable to the system or rejected (e.g. if the
measurement was delayed and is older than the latest buffered
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Fig. 5. Data structure of a single buffer entry.

entry). The core logic redirects dynamics measurements (e.g.,
from an IMU) to the core state module, which propagates the
core state vector and its covariance. If measurements are as-
sociated with any other sensor instance (e.g., GNSS), then the
core logic requests the latest state entry from the buffer and all
state-transition matrices starting at the previous update of this
sensor until the current step. The information is used to gener-
ate the state-transition matrix series described in Section III-B,
which is used to propagate the cross-covariance terms of the
core and sensor states. The propagated sensor cross-covariance
is used to build a covariance matrix with the corresponding
sensor and core covariance. The resulting covariance matrix is
corrected with the Eigenvalue method and is passed to the sen-
sor instance, which performs the update. The sensor instance
can handle the reduced covariance matrix and state-prior (latest
core and sensor state) as it is done for the classical approach.
This also allows the use of statistical tests (e.g. χ2 test)
within the sensor’s update step. The sensor instance returns
the updated states and covariance segments of the core and
the sensor to the core logic, which stores it in the buffer.
The presented method renders the core agnostic to the sensor
definition, which allows the arbitrary addition of sensors. Each
sensor instance is self-contained, performs its own updates,
and applies the corrections to its states. The same holds if a
new sensor instance is added during runtime. A sensor module
also handles its initialization based on the current core state,
provided by the core logic. The framework is programmed in
Matlab for fast prototyping, and implemented in C++ for high-
performance applications. The C++ framework has minimal
dependencies and only relies on the Eigen library. A ROS
package that uses the API of the C++ library is also provided.

IV. EXPERIMENTS

A. Validity and Observability

Due to the assumptions made in Section III-B, the approach
needs to be evaluated in terms of performance and characteris-
tics in simulation and the real-world. The tests of this section
have three objectives:

1) The evaluation of the three Eigenvalue correction meth-
ods (ABS, Zero, Delta = 0.05).

2) An experimental analysis that unobservable vision states
become observable by introducing a global pose sensor
(i.e., that correct/consistent information is propagated
despite the simplifications).

3) The validation of the overall modular approach.

The setup is as follows: we use the same simulated
ground-truth trajectory to generate 20 independent Monte-
Carlo datasets, which allow a statistically significant number
of repetitions. The trajectory has a duration of 15 minutes with
continuously varying velocity, accelerations, and randomly
introduced smooth orientations. Each sequence has the same
trajectory and the same Gaussian noise characteristics for
sensor and IMU measurements. The datasets provide 200 Hz
IMU measurements for propagation, 6DoF loosely-coupled
vision pose (10 Hz), and 6DoF pose sensor measurements
(50 Hz). The validity of the filter and the underlying modular
approach is quantified by the:

• Average Normalized Estimation Error Squared (ANEES)
described by [15] to determine the filter characteristics in
terms of consistency and credibility,

• State error plots for time-dependent coherence, and
• Root-Mean-Square Error (RMSE) w.r.t. ground-truth,

comparing the classical filter and our modular approach.

One dataset was processed with the classical full filter
approach to establish a baseline for the best-case scenario
(similar to the framework introduced by [3]). Each of the
20 datasets was processed with the modular filter definition
using the three different Eigenvalue correction methods. The
individual result of each state, from the modular approach,
was used to generate an RMSE with respect to the full filter
scenario. The mean of the individual core state RMSE for the
different Eigenvalue correction methods are shown in Figure 6.
The results show that the absolute Eigenvalue correction
method performs best for all states except for velocity, where
the zero method performs slightly better on two out of the
three dimensions.

The same test was performed for the observability validation
with introduced random state initializations for each sequence.
The calibration of the vision-world reference frame for the
vision sensor is unobservable but can be rendered observable
by introducing a global pose sensor. Since we are using the
segmentation of the covariance matrix, the vision and pose
sensor are never jointly present in the covariance matrix in the
same update step. Thus, we need to validate that the usual flow
of information from the pose sensor to the vision sensor, which
contributes to the observability of the vision-world reference
frame due to cross-covariances, can be recovered from the core

Fig. 6. We generated results with the classical full filter approach and 20
datasets each, with the three Eigenvalue correction methods of the modular
approach. The graph shows the mean of the RMSE between the results of the
classical and the modular filter for the essential core states.
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Fig. 7. We applied randomly generated and minorly wrong initializations
of the states that are unobservable without using other sensor modalities to
prove that the method preserves observability properties when using multiple
sensors. The initial covariance encloses the error of the initialization by 3σ
to allow for correct convergence.
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Fig. 8. The vision state pVW is unobservable without additional global
information. The plot shows the convergence of the state error (left) and
standard deviation (right) using the modular approach with the absolute
Eigenvalue method, 20 Monte-Carlo independent datasets, and varying errors
on the initialization of pVW . The result further proves that observability
properties are preserved with the modular approach.

states despite the covariance segmentation for the modular
approach. This is not inherently given as we explicitly de-
couple the covariances of the sensors. If this information flow
is not maintained, our approach would not be adequate for
practical usage. For testing purposes, the state initializations
for the vision sensor are altered for each dataset, and the
covariance is adapted such that the introduced error is enclosed
by a 3σ bound.

The RMSE of the core state is expected to be signifi-
cantly higher if the vision states do not converge. Figures
6 and 7 as well as Table II confirm that the Eigenvalue
correction to a small delta value (∆ = 0.05) shows the
least accurate performance, and motivate the usage of the
absolute Eigenvalue method, which was therefore used for the
remaining experiments and in Section IV. The low RMSE
for the described scenario, shown by Figure 7, and the correct
convergence of the state error and covariance in Figure 8, using
the absolute Eigenvalue method, confirm that the modular
approach preserves observability properties.

The next step is the validation of the overall filter credibility.
We are using a sensor setup with two pose sensors for this
test. The set of 20 datasets is processed with the modular
and full filter setup, and the NEES for each run is used to
generate the ANEES. Figure 9 shows the ANEES for the full
and the modular approach with their corresponding mean. It
also shows the 3σ upper-bound of the ANEES based on the
number of states and datasets. Both ANEES results are below
the upper 3σ ANEES bound, and the individual mean of the
ANEES is shown in Table II.

The error plot for this scenario is not shown because the
state errors are small and well presented by the RMSE in
Table I. Although the mean error is slightly higher due to
our approximation, the credibility is still given. The same
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Fig. 9. ANEES for the core states of the full (blue) and modular (red) filter
implementation using the absolute Eigenvalue method. We used 20 Monte-
Carlo independent datasets to generate a statistically significant characteriza-
tion of both filter methods. The plot shows the mean for both ANEES after the
individual filter method converged. The upper 3σ bound of the the ANEES
represented by the dashed line, is based on the number of core states and
datasets.

evaluation is done for real-world in-flight data with additional
environmental effects such as vibrations of the rotors that
affect IMU readings in Section IV-C.

TABLE I
STATE ERRORS FOR THE FULL AND MODULAR FILTER DEFINITION

pWI [cm] qWI [degree]
x y z roll pitch yaw

Full µ 0.84 0.83 1.27 0.361 0.375 1.707
Full σ 0.08 0.12 0.48 0.040 0.082 0.332

Modular µ 1.51 1.60 1.42 0.509 0.478 1.154
Modular σ 0.29 0.46 0.40 0.125 0.084 0.741

TABLE II
SUMMARY OF THE MEAN FOR THE ANEES RESULTS

States Full Filter Modular Abs Modular Zero

Nav. Core 0.35 0.3 0.3
Pose Sensor 0.9 0.6 13

B. Performance

The performance of the modular filter is another essential
aspect. This section presents timing profiles for a standard
scenario and a scenario that forces the framework to repropa-
gate states because of a delayed sensor measurement. Timing
profiles are generated with three complete runs for each data
point. Figure 10 shows the processing time of the update
and propagation step for a series of 1-10 pose sensors. Each
sensor introduces a 6DoF calibration state for translation and
orientation. The core error state is defined with 15 states,
derived from Section III-C and [1]. Thus, the figure shows
the timings for ’one sensor’ + ’core state’ (21 States) and
’ten sensors’ + ’core states’ (75 states). Considering the case
with 75 states: The corresponding covariance matrix has 5625
elements, which are processed by the classical approach for
each update and propagation step. The benefit of the modular
version is that it only processes the core state during the
propagation phase and the core state with one additional sensor
(21 · 21 = 441) during any update phase.

The evaluation confirms that the propagation (Fig. 10, right)
for the modular approach is independent of the number of
additional sensors while the processing time of the classical
implementation increases with the number of additional states.
The processing time of the update (Fig. 10, left) for the
classical approach grows exponentially while the modular
approach grows linearly. The modular version is more efficient
in terms of the total processing time (update + propagation
phase), starting at a scenario with three additional sensors (see
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Fig. 10. Timing profile for the classical full and modular EKF approach.
The time includes the buffer access and communication of data between the
filter instances. This is done to provide a fair comparison since the modular
approach introduces a slight overhead with respect to the classical approach.
Overall, the modular version still outperforms the classical approach.

Fig. 11. Total running time comparing the full and modular method over a
range of active sensors.

Fig. 11). The reason is a slight overhead due to the covariance
correction, being the state transition block generation and the
Eigenvalue correction, shown by the flow chart in Figure 3.
The overall efficiency of the whole system is higher for the
modular approach due to the decreased sensor update, and core
propagation time.

C. Vision Aided Landing Scenario with Sensor Switching

This section presents experiments with a realistic flight
scenario that is performed in simulation (see Fig. 13) and
the real-world (see Fig. 16). The setup uses a GNSS sensor
that provides position and velocity measurements at 5 Hz with
a position standard deviation of σpg

= [0.85 0.85 2.16]T

according to [16] and σvg
= 0.15 m/s2 for the velocity

measurement as suggested by [17]. The setup also includes
a loosely-coupled vision sensor in the form of a RealSense
T265 with σpv = 0.05 m for the position and σRv = 1 ◦

for the orientation measurement. The sensor suite further
includes an NXP MPXH6115A integrated pressure sensor with
σpp

= 0.15 m. Sensor delays are not intentionally introduced.
Figure 12 shows the flight profile and phases in which the
sensors are switched with the same self-calibration states that
are shown by Figure 2. Sensor states are initialized based
on the current core state, and the covariance is initialized to
enclose the possible error by a 3σ bound. The experiment
is performed with 0.5 m/s velocity for all translations. The
vehicle performs a vision based takeoff until an altitude of 3 m
is reached (segment 1 ). The GNSS and barometric sensors
are initialized in 2 . Since these two sensor instances are not
a priori known to the system, this event represents the addition
of new sensors to the system. The vision sensor is deactivated
at some point after the start of the horizontal translation. The
vehicle performs a 3 m translation in the x-direction, holds
at 4 , translates 1 m in the y-direction, and returns to the
takeoff location 3 . Back in 2 , the vision sensor is initialized
to the current location, and after a short overlapping period,
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Fig. 12. Experiment THL flight profile with sensor switching cues.
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Fig. 13. 3D position estimate (blue) of the simulated sensor switching scenario
and overlayed ground-truth (red). RMSE are shown by Table III. The curvy
path allows for improved yaw estimation using GNSS and pressure sensors.

Fig. 14. State error for the position and orientation of the core state. This
scenario was performed with 20 datasets to gain a statistically significant result
for the truly modular approach. The initial increase of the error in z-position
is caused by vision drift due to the takeoff maneuver, which also causes the
increased initial covariance of the rotation in yaw.

the GNSS and barometric sensors are deactivated. The vehicle
performs a vision-based landing at 5 .

The real-world experiment is performed in a motion cap-
turing room that provides 6DoF ground-truth for the vehi-
cle’s pose. The real vision and pressure measurements are
used, and the GNSS position and velocity measurements are
generated based on the ground-truth, with normal distributed
noise, according to the characteristics mentioned before. The
simulated and real-world scenarios do not provide synchro-
nized measurements, and the datasets have high acceleration
sections to render the bias of the core state observable.
The presented modular state estimation framework performs
self-initialization and self-calibration of the individual sensor
reference frames and extrinsics based on the current state and
sensor measurement.

The results of the simulation (see Fig. 14, Fig. 15, and
Table III) further confirm the validity of the approach. They
show that the covariance converges quickly after the absolute
measurement is introduced and is consistent but underconfi-
dent throughout the experiment shown by the ANEES plot.
The low RMSE in Table III also confirms the validity of the
approach. The results of the real-world scenario (see Fig. 16
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Fig. 15. ANEES for the simulated sensor switching scenario.
TABLE III

RMSE FOR THE SIMULATED AND REAL-WORLD THL SCENARIO.

pWI [cm] qWI [deg]
x y z roll pitch yaw

Simulated
Modular µ 4.03 3.27 6.23 0.62 0.65 1.94
Modular σ 1.17 0.61 1.25 0.156 0.199 1.083

Real-World
Modular µ 15.23 12.65 15.06 2.59 1.97 2.20
Modular σ 14.24 11.54 13.03 2.51 1.73 1.49
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Fig. 16. 3D estimate of real-world data with sensor switching (blue) and
overlayed ground-truth (red).

and Table III) illustrate that similar results are obtained with
real data.

V. CONCLUSIONS

We introduce a novel truly modular multi-sensor fusion
approach based on state covariance segmentation, which al-
lows for the addition and removal of sensors at runtime
with a significant gain of performance. Naive separation of
covariance elements and successive propagation and update
steps invalidates the fundamental properties of a covariance
matrix. The introduced approach preserves these properties
and ensures a consistent filter process. Extensive experiments
in simulation and real-world prove that the true modularity
approach is credible based on statistically significant ANEES
analysis. Furthermore, the modular approach preserves ob-
servability, performs self-calibration, and self-initialization.
This was shown throughout a vision based takeoff, transition,
and landing scenario with four different sensor measurement
updates. The scenario showed that the filter remains sta-
ble, consistent, and accurate throughout the presented sensor
switching scenario with four sensor switching cues and two
self-initialization procedures. All scenarios have been per-
formed with asynchronous sensor measurements both in simu-
lation and in a real flight. The modular approach outperforms
the classical approach due to faster sensor updates, which
improves general scalability for implementations that use this
approach.

It was also shown that the propagation phase of the modular
approach is constant and invariant to the number of sensors,
while the processing time of the classical approach grows
exponentially. This is especially interesting if a system uses
sensors that introduce measurement delays because the mod-
ular approach requires significantly less time to perform a re-
propagation step.
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Abstract

Visual SLAM approaches typically depend on loop closure detection to correct the in-
consistencies that may arise during the map and camera trajectory calculations, typically
making use of point features for detecting and closing the existing loops. In low-textured
scenarios, however, it is difficult to find enough point features and, hence, the perfor-
mance of these solutions drops drastically. An alternative for human-made scenarios, due
to their structural regularity, is the use of geometrical cues such as straight segments, fre-
quently present within these environments. Under this context, in this paper we introduce
LiPo-LCD, a novel appearance-based loop closure detection method that integrates lines
and points. Adopting the idea of incremental Bag-of-Binary-Words schemes, we build
separate BoW models for each feature, and use them to retrieve previously seen images
using a late fusion strategy. Additionally, a simple but effective mechanism, based on
the concept of island, groups similar images close in time to reduce the image candidate
search effort. A final step validates geometrically the loop candidates by incorporating
the detected lines by means of a process comprising a line feature matching stage, fol-
lowed by a robust spatial verification stage, now combining both lines and points. As it
is reported in the paper, LiPo-LCD compares well with several state-of-the-art solutions
for a number of datasets involving different environmental conditions.

1 Introduction
Simultaneous Localization and Mapping (SLAM) is a fundamental task in autonomous mo-
bile robotics. Regardless of the sensor used to perceive the environment, unavoidable noise
sources always interfere, leading to errors in the map and the robot’s pose calculations, re-
sulting in inconsistent representations. To overcome this problem, SLAM systems usually
rely on loop closure detection (LCD) methods to recognize previously seen places. These
detections provide additional constraints that can be used to correct the accumulated drift.
When cameras are involved, these methods are referred to as appearance-based loop closure
detection approaches [1, 5, 11, 12, 13, 20, 26].

It is well known that many visual SLAM solutions rely on point features because of their
wider applicability in general terms [23, 28]. Human-made environments, however, can lack
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It may be distributed unchanged freely in print or electronic forms.
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Figure 1: General overview of the proposed loop closure detection system.

texture and thus give rise to a low number of detected features. Nevertheless, precisely be-
cause of their nature, these environments usually exhibit structural regularities that can be
described using richer features such as lines, which can be more robust and less sensitive to
illumination changes. Several solutions can be found in the literature describing approaches
combining both kinds of features, points and lines [31, 40]. However, despite their success,
most of them rely exclusively on feature points during the LCD stage, discarding information
about lines that may be useful to improve the association performance for textureless envi-
ronments. Other approaches opt for using holistic image representations [4, 26, 36], which
can be faster to compute but less tolerant to visual changes, while, lately, solutions based
on Convolutional Neural Networks (CNNs) [2, 3, 37] have shown to exhibit enhanced ro-
bustness and general performance, although they are still disengaged from real-time SLAM
problems [13, 39]. This is because they tend to require significant computational resources,
e.g. on-board GPU, which makes them not suitable for mobile robotics in all cases.

The Bag of Words (BoW) model [29, 34], in combination with an inverted file, is ar-
guably the most used indexing scheme for appearance-based loop closure detection [14, 25].
Depending on how the visual vocabulary is generated, BoW-based solutions can be classi-
fied into off-line and on-line approaches. Off-line solutions generate the visual dictionary
during a training phase [11, 12, 27], what can be high time-consuming, while the general
application of the resulting vocabulary becomes highly dependent on the diversity of the
training set. As an alternative, there are approaches that propose to generate the dictionary
on-line [1, 13, 20, 21, 38, 39]. Moreover, binary descriptors [12, 13, 27] have emerged re-
cently as an alternative to real-valued descriptors for BoW models [1, 11, 21], since they
offer advantages in terms of computational time and memory requirements. Additionally,
similarity calculations can be performed using the Hamming distance or an of its variations,
what can be efficiently implemented in modern processors.

Under this context, in this paper, we introduce Lines and Points Loop Closure Detection
(LiPo-LCD), a novel appearance-based loop closure detection approach which combines
points and lines. For a start, both features are described using binary descriptors. Next,
an incremental BoW scheme is used for feature indexing. Lines and points are maintained
separately into two incremental visual vocabularies and employed in parallel to obtain loop
closure candidates efficiently. To combine the information provided by the two vocabularies,
we propose a late fusion method based on a ranked voting system. Finally, to discard false
positives, we improve the typical spatial verification step integrating lines into the proce-
dure through: (1) a line matching strategy which includes structural information to achieve
a higher number of matching candidates; and (2) a line representation tolerant to occlusions,
which is combined with points into an epipolarity analysis step. A set of experiments validat-
ing LiPo-LCD and characterizing its performance against several state-of-the-art solutions is
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Figure 2: (left) A human-made environment including a high number of lines and a low
number of points. (right) An outdoor environment presenting the opposite situation.

reported at the end of the paper.
Our approach follows a dual scheme to combine points and lines, such as the solutions

proposed by [17, 45]. Nonetheless, LiPo-LCD takes advantage of an incremental BoW
strategy and incorporates lines into the spatial verification procedure that does not require
map information, increasing its ability to be adapted to the operating environment, requiring
only a monocular camera, and improving the performance in several datasets, as shown later.

2 Overview of the Loop-Closure Detection Approach
Figure 1 illustrates the approach proposed for loop closure detection. As can be observed,
incremental visual vocabularies, along with the corresponding inverted files, are maintained
independently for each visual feature. When a new image is sampled, a set of line and point
binary descriptors is computed and used to (1) update the corresponding visual vocabulary
and (2) obtain a list of the most similar images from each vocabulary. Next, the two lists
are fused using a ranked voting procedure to obtain a final set of loop-closing candidates.
To avoid adjacent images from competing with each other as loop candidates, we group
images close in time using the concept of dynamic island [13]. Among the resulting islands,
the one best corresponding with the query image is selected, while its representative image
is geometrically assessed against the query to accept/reject the loop. The details about the
aforementioned processes can be found next.

2.1 Image Description
As stated previously, LiPo-LCD describes images using lines and points. The rationale be-
hind this approach is that the combination of multiple, complementary description tech-
niques is a way leading to improving the performance and robustness of the loop closing
method [19]. In our solution, the image It at time t is described by φ(It) = {Pt ,Lt}, being
Pt a set of local keypoint descriptors and Lt a set of line descriptors, both deriving from It .
These two descriptions complement each other to make image representation more robust:
while some environments may be described more distinctively using lines than points, i.e.
textureless scenes, others lacking structure will benefit from keypoints, and the net result is
a joint descriptor of a wider scope. Figure 2 illustrates this issue for two environments.
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2.1.1 Point Description

Given the above-mentioned advantages about binary descriptors, in this work, we have opted
for detecting and describing points using ORB [32]. Although the proposed strategy can be
used with any other binary descriptor, we employ ORB because of its robustness to rotation,
scale and illumination changes [28]. The m ORB descriptors found at image It define the
point descriptor as Pt = {pt

0, pt
1, . . . , pt

m−1}.

2.1.2 Line Description

Lines are found using the Line Segment Detector (LSD) [18]. LSD is a linear-time line seg-
ment detector that provides high-precision results and subpixel accuracy without parameter
tuning. On the one hand, detected lines are described using a binary form of the Line Band
Descriptor (LBD) [43]. In the original implementation, a rectangular region centred on each
line is considered. Such region is divided into a set of bands Bi, from which a descriptor
BDi is computed contrasting Bi with its neighbouring bands. On the other hand, the binary
descriptor is finally obtained considering 32 possible pairs of band descriptors BDi within
the support region. Each pair is compared bit by bit, generating an 8-bit string per pair. A
final 256-bit descriptor is generated concatenating the resulting strings for all pairs. The set
of n LBD binary descriptors for image It defines the line descriptor Lt = {lt

0, l
t
1, . . . , l

t
n−1}.

2.2 Searching for Loop Closure Candidates

To index and retrieve loop closure candidates, we rely on the OBIndex2 approach [13], a hi-
erarchical tree structure to manage an increasing number of binary descriptors in an efficient
way. This structure can then be used as an incremental BoW scheme and combined with an
inverted file for fast image retrieval. The reader is referred to [13] for further detail.

Given that LiPo-LCD describes all visual features using binary descriptors, we maintain
two instances of OBIndex2, one for points and one for lines. Each instance builds an incre-
mental visual vocabulary along with an index of images for each feature. Given an image
It , a parallel search is performed on each index to retrieve the most similar images of points
and lines. As a result, two lists are obtained: (1) the m most similar images using points
Ct

p = {It
p0
, . . . , It

pm−1
} and (2) the n most similar images using lines Ct

l = {It
l0
, . . . , It

ln−1
}. Each

list is sorted by, respectively, their associated scores st
p(It , I

t
j) and st

l(It , I
t
j), which measure

the similarity between the query image It and the image I j. Since the range of these scores
varies depending on the distribution of visual words for each vocabulary, they are mapped
onto the range [0,1] using min-max normalization as follows:

s̃ t
k
(
It , It

j
)
=

st
k
(
It , It

j
)
− st

k
(
It , It

min
)

st
k (It , I

t
max)− st

k (It , I
t
min)

, (1)

where st
k (It , I

t
min) and st

k (It , I
t
max) respectively corresponds to the minimum and the maximum

scores of an image candidate list, being k ∈ {p, l}. Images whose normalized score s̃ t
k is

lower than a threshold are discarded to limit the maximum number of candidates. Addition-
ally, the current image descriptors are used to update the visual vocabularies appropriately.
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2.3 Merging Lists of Candidates
The two resulting lists Ct

p and Ct
l provide loop closure candidates from each individual per-

spective. Thus, the next step is to combine both lists to obtain an overall overview of possible
candidates but considering lines and points altogether. In this regard, the literature comprises
multiple techniques to combine multimodal information for image retrieval [7]. These can
generally be categorized into two schemes, namely early and late fusion: while the former
combines all features into a single representation before being processed, the latter works
at the decision level, combining the outputs produced by different retrieval systems. In our
proposal, given the heterogeneity of the features to combine, we rely on a late fusion ap-
proach that employs a ranked voting system based on the Borda count [33] to merge lists
of candidates. This is a simple data fusion form based on democratic election strategies:
first, a set of voters rank a list of fixed candidates on the basis of their preferences; scores
are next given to each candidate in inverse proportion to their ranking; finally, once all votes
have been emitted, the candidate with the highest number of votes wins. In LiPo-LCD, two
independent voters, one for each visual vocabulary, emit an different-size ordered list of can-
didates Ct

k. The number of candidates c to vote for is set as the minimum length of the two
lists. Next, top-c images on each list Ct

k are ranked with a score bk as:

bk(It
i ) = (c− i) s̃ t

k
(
It , It

i
)
, (2)

where i denotes the order of the image Ii in the list Ct
k and s̃ t

k (It , I
t
i ) is the normalized score

of the image in that list. For each image that appears in both lists, a combined Borda score
β is computed as the geometric mean of the individual scores:

β (It
i ) =

√
bp(It

i )bl(It
i ) . (3)

We employ the geometric mean instead of the arithmetic mean to reduce the influence
of false positives in one of the lists. An integrated image list Ct

pl results next by sorting the
scores β (It

i ) of all the retrieved images. This list merges information from the two visual
vocabularies, independently of the number of features detected in the current environment.
Finally, to deal with the fact that some environments mostly exhibit one type of feature,
images that only appear in one list are also incorporated into Ct

pl , although penalized.

2.4 Dynamic Islands Computation
In pursuit of selecting a final loop closure candidate, in this stage we verify the temporal
consistency of the images retrieved in Ct

pl . To this end, we rely on the concept of dynamic
islands used by iBoW-LCD [13]. This method permits to avoid images competing among
them as loop candidates when they come from the same area of the environment. A dynamic
island ϒm

n groups the images whose timestamps range from m to n. Initially, a set of islands
Γt for the current image It is computed considering images in the list Ct

pl sequentially: every
image Ii ∈Ct

pl is either associated to an existing island ϒm
n if the image timestamp lies in the

[m,n] interval or else is used to create a new island. After processing all images in Ct
pl , a

global score g is computed for each island as:

g(ϒm
n ) =

n

∑
i=m

β (It
i )

n−m+1
. (4)
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Unlike [13], where only points are considered, in LiPo-LCD, score g is the average of
the Borda scores of the images belonging to the island, integrating both points and lines.
Finally, the resulting set of islands Γt is sorted in descending order according to g. Next
step is to select one of the resulting islands, denoted by ϒ∗(t), to determine which area of
the environment is the one most likely closing a loop with It . iBoW-LCD makes use of
the concept of priority islands, defined as the islands in Γt that overlap in time with the
island selected at time t− 1, ϒ∗(t− 1). This is inspired by the fact that consecutive images
should close loops with areas of the environments where previous images also closed a loop.
iBoW-LCD selects, as a final island, the priority island with the highest score g, if any.
However, this approach is just based on the appearance of the images and, therefore, due
to perceptual aliasing, it might produce incorrect island associations in some human-made
environments. For this reason, LiPo-LCD proposes a simple but effective modification of
the original approach that only retains an island for the next time step if the final selected
loop candidate satisfies the spatial verification procedure explained in Section 2.5. Once the
best island ϒ∗(t) has been determined, the image Ic with the highest Borda score β of ϒ∗(t)
is selected as its representative and evaluated in the next verification stage.

2.5 Spatial Verification

Although the BoW scheme is a good starting point to find loop closure candidates, to finish,
we perform a final geometric check to take into account the spatial arrangement of the image
features and avoid perceptual aliasing. This final step comprises an epipolarity analysis
between the current image It and the loop candidate Ic on the basis of the number of inliers
that support the roto-translation of the camera (after computing the fundamental matrix F
using RANSAC). If the number of inliers is not high enough, the loop hypothesis is rejected.

The epipolarity analysis is typically carried out using a putative set of point matchings.
However, as stated along this paper, point features might not be helpful because of the na-
ture of the environment, and hence integrating lines into the geometric check can be useful,
apart from the fact that straight segments can tolerate partial occlusions. To this end, LiPo-
LCD makes use of (1) a novel line feature matching approach and (2) incorporates these line
matchings, together with point matchings, into the geometric check. To match points, we
make use of the available ORB descriptors, the Hamming distance and the Nearest Neigh-
bour Distance Ratio (NNDR) [24].

2.5.1 Line Feature Matching

Although NNDR is normally useful to discard false matchings between keypoints, it per-
forms poor in respect to line descriptors matching, especially in human-made environments
where line descriptors tend to be affected by perceptual aliasing [43]. To enhance line match-
ing performance, the authors of [43] combine structural and appearance information in a re-
lational graph. Despite their good results, their approach requires a high amount of memory
and does not escalate well with the number of lines. In this work, we propose a much sim-
pler but effective method to combine structural and appearance information for line feature
matching. First, for each line descriptor lt

i in the current image It , we retrieve an ordered
list of the most similar line descriptors of the candidate image Ic. Next, to deal with camera
rotations, we compute a global rotation θg between the two frames as explained in [43]. θg
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Figure 3: Loop closure detections found in the L6I dataset using different visual features
(Points, Lines, Points + Lines), and the associated ground truth. White dots represent a loop
closure detected.

is next used to compute the relative orientation α
j

i between each pair of lines as:

α
j

i = |θ t
i −θ

c
j +θg| , (5)

being θ t
i the orientation of the line on the current image and θ c

j the orientation of their

corresponding line in the list. For each list, all line matchings with high values of α
j

i are
discarded, and, as a result, a filtered list of line candidate matchings is obtained. To generate
the final set of line matchings, we choose the two most similar surviving nearest neighbours
from each list and apply the NNDR test.

2.5.2 Epipolar Geometry Analysis Combining Points and Lines

Works described in [6, 30] compute the fundamental matrix F from homographies estimated
from line segment matchings across images, provided these segments lie in at least two
different planes. LiPo-LCD makes use of a simpler but effective approach that avoids this
constraint. On the one hand, differently to other representations that can be found in the
literature [22, 41, 44], in this work, line segments are represented by their endpoints. On
the other hand, endpoints are first matched between matching lines and next regarded as
additional point correspondences for F computation. To associate segment endpoints (taking
into account that a starting point of a line might correspond to the end point of the line in
the other image), we select that pair that minimizes the rotation between lines using lines
orientation and the global rotation θg, as computed in Eq. 5. We consider a candidate line
matching as an inlier if at least one endpoint pair supports the geometric model.

3 Experimental Results
In this section, we evaluate the performance of LiPo-LCD using several public datasets.
LiPo-LCD is also compared against some state-of-the-art solutions. All experiments were
performed on an Intel Core i7-9750H (2.60 GHz) processor with 16 GB RAM.

3.1 Methodology
Precision-recall metrics are used to evaluate the system. Given that false detections can be
critical if LiPo-LCD is used in a real SLAM solution, we are especially interested in observ-
ing the maximum recall that can be achieved at 100% precision. OBIndex2 and iBoW-LCD
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Figure 4: P-R curves for each dataset. P is 1.0 for all R values lower than 0.75.

CC EuR5 K00 K06 L6I L6O MLG
NNDR 8.54 8.91 15.06 12.35 7.43 3.47 4.24
Proposed 18.15 19.21 25.37 22.51 10.14 8.45 11.34

Table 1: Average number of line inliers after the epipolar geometric analysis using NNDR
and the proposed line feature matching method.

were configured as explained in [13]. The rest of the approaches shown in this section
were executed using the default parameters proposed by their original authors. The fol-
lowing datasets were considered to validate LiPo-LCD: CityCentre [10] (CC), EuRoC Ma-
chine Hall 05 [9] (EuR5), KITTI 00 [16] (K00), KITTI 06 [16] (K06), Lip6Indoor [1] (L6I),
Lip6Outdoor [1] (L6O) and Malaga 2009 Parking 6L [8] (MLG). These datasets encompass
a wide range of environments including, for instance, urban and indoor scenarios, which are
usually rich in lines, or outdoor scenarios, where points predominate over lines. For each
dataset, we use the ground truth provided by the original authors except for the KITTI se-
quences, where we employ the one provided by [4], and the EuR5 and MLG datasets, where
we use the files provided by [39].

3.2 General Performance

First, we validate the combination of points and lines proposed in this work. To this end,
Fig. 3 shows the loop closures detected by LiPo-LCD using points, lines and both features,
as well as the ground truth for the L6I dataset, whose images are poor in feature points. As
can be observed, system performance increases when points and lines are used together as
visual features. To measure the global performance of the system, Fig. 4 shows precision-
recall curves for LiPo-LCD and for each dataset. As can be observed, high recall rates are

FE VU SC SV
Points 18.05 183.16 146.73 -
Lines 17.60 23.76 18.13 -
Parallel 19.05 196.58 159.01 15.09

Table 2: Average response time (ms) per image, calculated for each part of the pipeline.
These times were computed over the K00 dataset. FE: Feature Extraction; VU: Vocabulary
Update; SC: Search for Candidates; SV: Spatial Verification.

Citation
Citation
{{Garcia-Fidalgo} and {Ortiz}} 2018

Citation
Citation
{Cummins and Newman} 2008

Citation
Citation
{Burri, Nikolic, Gohl, Schneider, Rehder, Omari, Achtelik, and Siegwart} 2016

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Geiger, Lenz, and Urtasun} 2012

Citation
Citation
{Angeli, Filliat, Doncieux, and Meyer} 2008

Citation
Citation
{Angeli, Filliat, Doncieux, and Meyer} 2008

Citation
Citation
{Blanco, Moreno, and Gonzalez} 2009

Citation
Citation
{Arroyo, Alcantarilla, Bergasa, Yebes, and Bronte} 2014

Citation
Citation
{{Tsintotas}, {Bampis}, and {Gasteratos}} 2019



COMPANY-CORCOLES ET AL.: COMBINING LINES AND POINTS FOR LCD 9

CC EuR5 K00 K06 L6I L6O MLG
Bampis [5] 71.14 n.a. 96.53 n.a. 52.22 58.32 87.56
Gálvez-López [12] 31.61 n.a. n.a. n.a. n.a. n.a. 74.75
Mur-Artal [27] 43.03 n.a. n.a. n.a. n.a. n.a. 81.51
Cummins [11] 38.77 n.a. 49.2 55.34 n.a. n.a. 68.52
Stumm [35] 38.00 n.a. n.a. n.a. n.a. n.a. n.a.
Gomez-Ojeda [17] n.a. 1.61 75.93 56.94 n.a. n.a. n.a.

Tsintotas [39] n.a. 83.7 97.5 n.a. n.a. 50.0 85.0
Tsintotas [38] n.a. 69.2 93.2 n.a. n.a. n.a. 87.9
Angeli [1] n.a. n.a. n.a. n.a. 36.86 23.59 n.a.
Zhang [42] 41.2 n.a. n.a. n.a. n.a. n.a. 82.6
Gehrig [15] n.a. 71.0 93.1 n.a. n.a. n.a. n.a.
Khan [20] 38.92 n.a. n.a. n.a. 41.74 25.58 78.13
Garcia-Fidalgo [13] 88.25 n.a. 76.50 95.53 83.18 85.24 n.a.

LiPo-LCD 89.30 81.94 97.80 97.38 85.24 97.31 75.73

Table 3: Maximum recall at 100% precision for several off-line approaches (top), on-line
approaches (middle) and the proposed solution (bottom). Winners are indicated in bold face.

always achieved while maintaining the precision at 100%. Moreover, LiPo-LCD exhibits
very stable behaviour in all cases.

Next, we evaluate our novel line feature matching strategy. For that purpose, we compute
the average number of line inliers on each dataset using either a classical NNDR approach
for lines and our approach. Results are shown in Table 1. As can be seen, the proposed line
matching technique achieves a higher number of inliers in all datasets, even in sequences
with severe appearance changes.

Finally, we evaluate the performance of LiPo-LCD in terms of computational times. The
results obtained can be found in Table 2. We show results for K00 since it is the largest
dataset considered in this work. We measure the average execution time in milliseconds for
each stage of the pipeline, not taking into account times for merging lists of candidates and
island selection, since they are negligible. The average response time of the whole system
per image turns out to be 389.79 ms using a parallel implementation. As can be observed,
feature extraction steps are very fast in all cases. The vocabulary update and the search for
candidates steps are slower for points, due to the number of features to handle on each case.
The spatial verification stage is always performed using points and lines together, and, hence,
times for each feature separately are not available.

3.3 Comparison with Other Solutions

In this last section, LiPo-LCD is compared with other solutions. Table 3 shows the maximum
recall achieved at 100% precision for all approaches. The results reported come from the
original works, except for [17], which was executed by ourselves using the vocabularies
and the default parameters provided by their authors. Results not available are indicated by
n.a. As can be observed, LiPo-LCD achieves, in most cases, a higher recall than the other
solutions. This is particularly interesting regarding the L6I dataset, where the combination
of points and lines allows us to increase the performance in a low-textured scenario. It is
also worth mentioning that LiPo-LCD outperforms [17], which is perhaps the most similar
solution to ours.
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4 Conclusions

In this work, we have described LiPo-LCD, an appearance-based loop closure detection
method that combines points and lines. This combination allows us to detect loops in en-
vironments poor of feature points. Moreover, points and lines are described using binary
descriptors for execution time reduction. To obtain loop closure candidates from both visual
clues, we rely on a dual incremental BoW scheme. A late fusion method for merging both
lists of candidates, based on the Borda count, is also proposed. The loop candidate hypoth-
esis is finally validated by means of a geometrical check, which involves both points and
lines. LiPo-LCD compares favourably with several state-of-the-art methods under different
environmental conditions.
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MSC-VO: Exploiting Manhattan and Structural
Constraints for Visual Odometry

Joan P. Company-Corcoles , Emilio Garcia-Fidalgo , and Alberto Ortiz , Member, IEEE

Abstract—Visual odometry algorithms tend to degrade when fac-
ing low-textured scenes —from e.g. human-made environments—,
where it is often difficult to find a sufficient number of point
features. Alternative geometrical visual cues, such as lines, which
can often be found within these scenarios, can become particu-
larly useful. Moreover, these scenarios typically present structural
regularities, such as parallelism or orthogonality, and hold the
Manhattan World assumption. Under these premises, in this work,
we introduce MSC-VO, an RGB-D -based visual odometry ap-
proach that combines both point and line features and leverages,
if exist, those structural regularities and the Manhattan axes of
the scene. Within our approach, these structural constraints are
initially used to estimate accurately the 3D position of the extracted
lines. These constraints are also combined next with the estimated
Manhattan axes and the reprojection errors of points and lines
to refine the camera pose by means of local map optimization.
Such a combination enables our approach to operate even in the
absence of the aforementioned constraints, allowing the method to
work for a wider variety of scenarios. Furthermore, we propose a
novel multi-view Manhattan axes estimation procedure that mainly
relies on line features. MSC-VO is assessed using several public
datasets, outperforming other state-of-the-art solutions, and com-
paring favourably even with some SLAM methods.

Index Terms—Localization, mapping, SLAM.

I. INTRODUCTION

V ISUAL Odometry (VO) is the process of estimating the
trajectory of a camera within an environment by analysing

the sequence of images captured. VO is a key part of a more
sophisticated family of methods known as Visual Simultaneous
Localization and Mapping (V-SLAM), which typically combine
VO with a loop closure detection approach to perform both tasks
at the same time. When a previously seen place is revisited,
the accumulated drift produced by VO can be alleviated incor-
porating new constraints into the optimization stage. However,
this strategy does not completely remove the camera pose error,
so that the overall performance of any SLAM system gets
determined by the VO accuracy [1].
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Many VO and SLAM systems rely on point features because
of their wider applicability in general terms [2]. However, in
low-textured scenarios, their performance decrease due to the
low number of points detected [3]. In this regard, the combina-
tion of point and line features has been demonstrated to reduce
the number of tracking failures in these environments [3]–[5].
A complementary technique is to take profit of the structural
constraints typically present in these scenarios, such as paral-
lelism and/or orthogonality, through a pose-graph optimization
strategy [6]. Another well-known strategy, which can be used
to reduce the rotation drift in human-made environments, is to
adopt the Manhattan World (MW) assumption [7]. This hypoth-
esis assumes a Cartesian coordinate system for the environment
and that most part of the geometrical entities present in the
scene align to one of its axes, named as Manhattan Axes (MA).
This assumption is fundamentally used during the tracking
stage [8]–[12]. Nonetheless, these methods do not usually take
into account that some indoor environments are not strictly
adhering to this assumption, leading to degradation in accuracy
or even to tracking failures [13].

Based on the above, this work exploits the benefits of point and
line features used in combination with structural constraints and
MA alignment to propose a new RGB-D VO framework named
as MSC-VO from Manhattan and Structural Constraints - Visual
Odometry. As already said, the proposed method relies on point
and line features, mostly because of their low detection times.
Additionally, to address the inaccuracies in depth estimation
which result from occlusions, depth discontinuities and RGB-D
noise, which is even more notorious for lines than for points,
we propose a two-step procedure that can be briefly stated as
(1) for each line detected in the image plane, we estimate its
3D line endpoints using a robust fitting procedure, and (2) we
next refine the estimated endpoints using the scene structural
regularities. Moreover, our approach proposes a novel local map
optimization stage which combines point and line reprojection
errors along with structural regularities and MA alignment,
resulting into more precise local trajectory estimations. Unlike
other approaches, where the MW constraints are used during the
tracking stage, our solution incorporates the MW assumption
during local map optimization, which allows us not to slow
down the tracking, which typically requires real-time operation
to perform properly. Finally, we propose a novel multi-view MA
initialization procedure. A first illustration of the performance
of MSC-VO can be found in Fig. 1.

In brief, the most important contributions of this work are:
1) A robust RGB-D VO framework for low-textured envi-

ronments, which can improve the pose accuracy when
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Fig. 1. Example of local map generated by MSC-VO. For a better under-
standing, only line features are shown. The map corresponds to a human-made
environment, which, as expected, is rich in line features. Furthermore, parallel
and orthogonal relations between lines are highly present due to the design of
these environments. The Manhattan axis line associations are shown using red,
green and blue colours, while non-associated lines are labelled in purple- Those
lines not included in the covisibility graph are shown in black.

structural regularities and MA alignment are present in the
scene. Otherwise, our solution remains operational, as will
be shown in the experimental results section.

2) A 3D line endpoint computation method based on the
structural information present in the scene.

3) An accurate and efficient 3D local map optimization strat-
egy, which combines reprojection errors with structural
constraints and MA alignment.

4) A novel MA initialization procedure that refines the esti-
mation of the traditionally employed Mean Shift algorithm
by using multiple frame observations in a multi-graph
non-linear least squares formulation.

5) An extensive evaluation of the proposed approach on sev-
eral public datasets and a comparison with other VO and
SLAM state-of-the-art methods.

6) As an additional contribution, the source code MSC-VO is
available online for the community.1

The rest of the paper is organized as follows: Section II
overviews most relevant related works in the field; the proposed
framework is introduced in Section III; Section IV reports on
the results obtained; and, finally, Section V concludes the paper
and suggests some future research lines.

II. RELATED WORK

VO and Visual SLAM algorithms can be roughly classi-
fied into two main categories: feature-based and direct meth-
ods [1]. Among them, feature-based approaches are typically
more robust to illumination changes than direct methods. De-
spite their impressive results on well-textured scenarios [2],
their performance decreases when dealing with low-textured
environments [4]. Due to this reason, some authors have opted
for the combination of points with other geometric entities, e.g.
lines [3]–[5], planes [6], or both [13].

Assuming a MW in human-made environments has demon-
strated to be very effective to reduce the rotational drift [8]–[12].
Generally, this premise is taken into account during the tracking
stage, being usually decoupled the rotation and the translation
parts. Different strategies have been proposed to estimate and
track the MA. For example, Zhou et al. [8] propose a single Mean
Shift iteration that tracks the dominant MA for each frame by

1[Online]. Available: http://github.com/joanpepcompany/MSC-VO

using a set of normal vectors. The translational part is computed
through three simple 1D density alignments. In [9], the trans-
lation estimation is improved through a Kanade-Lucas-Tomasi
(KLT) feature tracker. However, these two approaches require
the existence of multiple orthogonal planes per frame. To solve
this issue, Kim et al. [10] combine line and plane features within
a Mean Shift-based approach. In addition, they propose to use the
reprojection error from the tracked points in the estimation of the
translation. In a more recent work, they add an orthogonal plane
detection and tracking method [11]. Another solution to improve
the tracking accuracy is presented in [12], where the authors
introduce the concept of plane orientation relevance to track the
MA. More recently, other features are employed in [14], which
combines vanishing directions of 3D lines and plane normal
vectors to track the MA. In this regard, [13], [14] report that the
use of planar features increases the accuracy of the tracking, and,
additionally, contributes positively to the estimation of the MA.
However, plane detection usually relies on depth estimation,
which can fail in some scenarios due to the range limitations and
noise of RGB-D cameras [13]; contrarily, line features can be
detected directly from the available images. Besides, planes and
lines detection require similar computational times if the number
of planes is not high; otherwise, the complexity of the underlying
processes leads to larger running times for planes. Additionally,
to detect and track the MA robustly, these methods typically
combine planes with other features, such as lines. Consequently
with the aforementioned, our pipeline combines points and lines.

Moreover, the accuracy of the estimated MA determines the
correctness of the system during its operation. To reduce these
inaccuracies, Li et al. [15] describe a method that refines the
reference MA by tracking it on each frame, and, thus, obtains
multiple reference MA, which are later fused by Kalman Filter-
ing. Following this idea, we propose to refine the position of 3D
lines during MA estimation by using a graph-based non-linear
error function that includes multiple views of the lines. However,
unlike [15], we estimate the MA only once and they remain fixed
along the whole sequence.

Local map optimization is usually performed in the back-
end to reduce the errors produced during the tracking stage. In
this regard, some approaches refine the pose of some previous
frames after tracking the MA. For instance, in [16], the authors
propose a line-based local optimization method to refine only
the translation. However, the rotation is still computed using the
decoupled tracking strategy. Moreover, other approaches [6],
[14] perform this local optimization by combining point and
plane features in conjunction with structural constraints, which
have been shown to achieve better results than the decoupled
scheme [14].

There exist indoor environments that do not strictly conform
to the MW assumption. In these cases, the performance of
approaches purely based on it degrades, even leading to tracking
failures. To overcome this issue, Zhang et al. [6] propose using
parallel and perpendicular constraints as an alternative to the
MW assumption. Despite its advantages, this method can not
reduce the long-term rotation error as the MW assumption does.
Another solution is proposed in [13], where the authors use either
a decoupled or a non-decoupled tracking strategy depending on
whether the scene meets the MW assumption. These strategies
permit these works to not only focus on a specific environment.
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Fig. 2. Overview of MSC-VO.

The related works reviewed above suggest the use of the
MW assumption to increase the localization accuracy of VO and
SLAM methods. However, using this assumption as a primary
source in the tracking procedure can lead to failures in some
scenes where the MW assumption is not satisfied, what can
restrict those solutions for certain specific environments. As
a solution, we propose the incorporation of the MA in local
map optimizations. Additionally, we take inspiration from [14],
which reports the structural constraints as beneficial for the pose
refinement process. To this end, we propose a novel local map
optimization approach that combines the point and line repro-
jection error, the MA alignment and the structural constraints of
the scene. Allowing that, the punctual dissatisfaction of some
of these constraints does not affect the overall performance. As
a result, our method leads to higher localization accuracy and
allows working in a wider range of scenarios.

III. MSC-VO OVERVIEW

MSC-VO is built on top of the tracking and local mapping
components of ORB-SLAM2 [2]. Therefore, it comprises two
threads running in parallel, as it is illustrated in Fig. 2. Further
details on MSC-VO can be found next.

A. Tracking

The tracking thread is in charge of estimating the position of
every frame captured. Additionally, this module decides whether
a new keyframe needs to be created. It also associates each new
map line with one of the MA, if possible.

1) Feature Extraction: Every frame It coming from the
RGB-D sensor at time t consists of a colour image Ict and a
depth image Idt . Point and line features are extracted from Ict .
Points are detected and described using ORB [17], while lines
are detected using the Line Segment Detector (LSD) [18] and
described using the binary form of the Line Band Descriptor
(LBD) [19]. In the following, the location of a point i in image
coordinates is denoted as pi, while each line segment j detected
in the image plane is represented by a start point sj and an end
point ej . Additionally, the normalized line lj is expressed as:

lj =
ej − sj

‖ej − sj‖ . (1)

2) 3D Feature Position Estimation: Once points and lines
have been detected and described, their 3D positions in camera
coordinates are obtained. A point pi is backprojected using as
depth the value corresponding to its 2D position in Idt . The
resulting 3D position in camera coordinates is denoted as P c

i .
Since lines are more affected than points by depth discontinuities
and occlusions, this simple procedure can end up with inaccurate
3D lines. To reduce this effect, we propose a robust two-step
method to compute the 3D line endpoints.

First, for every line segment j, we calculate an initial 3D
position for its endpoints, denoted by {Sc

j , E
c
j}, by backproject-

ing a subset of the points that conforms the line in the image
and, next, performing a robust fitting step as in [14]. The 3D
normalized lineLc

j is computed similarly to (1). Next, we employ
the structural constraints of the scene to refine each detected line.
We start by associating parallel and perpendicular lines. To this
end, for every possible pair of lines (Lc

m, Lc
n) detected in the

current image, we compute the cosine of the angle between the
two direction vectors by means of the dot product:

cos (Lc
m, Lc

n) =
Lc
m · Lc

n

‖Lc
m‖‖Lc

n‖
. (2)

We choose only those pairs (Lc
m, Lc

n) whose cosine value
is close to 0 or 1 representing, respectively, perpendicular or
parallel lines. The selected pairs are employed to refine their
line endpoints by means of non-linear optimization. We use the
Levenberg–Marquardt algorithm implemented in g2o [20] to this
end. Formally, we define the orientation discrepancy d between
lines Lc

m and Lc
n as:

d(Lc
m, Lc

n) = | cos (Lc
m, Lc

n) | . (3)

Let us denote L⊥ and L‖ as the sets of, respectively, valid per-
pendicular and valid parallel line pairs. Given a pair (Lc

m, Lc
n) ∈

L⊥, the error term E⊥
m,n is defined as:

E⊥
m,n = d(Lc

m, Lc
n) · ω−1

n , (4)

where ωn weights the error term in accordance to the line re-
sponse returned by the LSD algorithm for segment n. Similarly,
for another pair (Lc

m, Lc
n) ∈ L‖, the error term E

‖
m,n is defined

as follows:

E‖
m,n =

√
1− d2(Lc

m, Lc
n) · ω−1

n . (5)

where d(·, ·) ∈ [0, 1].
We define L as the set of variables to be optimized, which

includes those lines that have at least one structural association
either on L⊥ or L‖. We then compute the optimal line end points
of L by minimizing the following cost function:

L = argmin
L

⎛
⎝ ∑

(i,j)∈L⊥

ρ
(
E⊥

i,j

)
+

∑
(k,o)∈L‖

ρ
(
E

‖
k,o

)⎞⎠ , (6)

where ρ is the Huber loss function to reduce the influence of
outliers. Fig. 3 summarizes the notation of points and lines
regarding frame coordinates, and the two error terms defined
in this section. As it will be shown in Section IV, using the
outlined procedure, the 3D lines estimation accuracy improves,
benefiting the whole system.

Authorized licensed use limited to: Universitaet Klagenfurt. Downloaded on March 18,2022 at 15:06:06 UTC from IEEE Xplore.  Restrictions apply. 



2806 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 7, NO. 2, APRIL 2022

Fig. 3. The left drawing illustrates the notation used for 2D and 3D features,
while the right drawings illustrate the line endpoints error terms. Sc

j and Ec
j are

the line endpoints to optimize. The right-top drawing shows the error term E⊥
i,j

as the cosine of the angle between the normalized line defined by Sc
i and Ec

i
and a perpendicular line, shown in green, for a perpendicular association Lc

j .

The right-bottom drawing illustrates the parallel error term E
‖
k,o

, calculated as
the sine of the angle between the normalized line defined by Sc

k and Ec
k and a

parallel association Lc
o. (Both cases assume ω = 1.).

3) Pose Estimation: Once features are extracted, an opti-
mization procedure is carried out to estimate the current camera
orientation Rt ∈ SO(3) and translation tt ∈ R3. Initially, map
points and lines observed in the previous frame are projected to
the current frame, assuming a constant velocity motion model.
Next, two sets of 2D-3D correspondences, one for points as in [2]
and one for lines as in [5], are computed. These associations are
then employed to optimize the current camera pose, minimizing
the following cost function:

{Rt, tt} = argmin
Rt,tt

⎛
⎝∑

i∈P

ρ (Ep
i ) +

∑
j∈V

ρ
(
El

j

)
⎞
⎠ , (7)

where P and V are, respectively, the sets of all point and line
matches. The error term for the observation of a map point i is
defined as:

Ep
i = ‖ pi − π(RtP

w
i + tt) ‖2 · ω−1

i , (8)

where Pw
i ∈ R3 is the point in world coordinates corresponding

to pi ∈ R2 and ωi weights the error term in accordance to
the response of the ORB detector. The projection function π
transforms a 3D point P c

i in camera coordinates into the image
plane using the camera calibration parameters [21]. On the other
side, the error term for an observed map line j in the current
frame is defined as:

El
j =

∥∥nj · π(RtS
w
j + tt), nj · π(RtE

w
j + tt)

∥∥2 · ω−1
j , (9)

where Lw
j = {Sw

j , E
w
j } is the map line in world coordinates

that matches the 2D segment lj with normal vector nj . Once the
camera pose has been estimated, we project the local map into
the current frame to obtain more correspondences, as performed
in [2]. The pose is optimized again with the resulting matches.

4) Keyframe Insertion: Once the camera pose has been es-
timated, the current frame is evaluated to decide whether it
should be considered as a new keyframe. We use a similar policy
as ORB-SLAM2 [2], but incorporating line correspondences.
Unlike ORB-SLAM2, we do not use the condition of a minimum
number of features tracked. The rationale behind this idea is that
the proposed method is focused on low-textured environments,

where typically the number of features tracked per frame can
change drastically between scenes. Therefore, it is not possible
to fix a reasonable threshold. Instead, we propose to use the ratio
between the current frame features that are being tracked in the
map, and the sum of these features with the ones that could be
potentially created. Once a new keyframe is generated, points
and lines are included in the local map and redundant features are
culled, as performed in [2]. For each new map line, we search for
parallel or perpendicular line correspondences in the local map.
Additionally, each line is also associated to an MA, if possible,
as explained in the next section.

5) Manhattan Axes Association: Given M = {MA0,
MA1,MA2} as the set of Manhattan Axes, when a new
keyframe is inserted, each new map line j is associated to axis
Mj ∈ M whenever possible. To this end, we compare every
line Lw

j with each of the three axes: if the value of expression in
(3) gets close enough to 1 for axis MAk, the line is considered as
parallel to MAk, and they are matched, i.e. Mj = MAk. These
associations are used during local map optimization to reduce
the camera rotation drift. Notice that, given the combination
of structural constraints and this MA alignment, our approach
is able to operate even if these axes are not available. The
procedure to estimate these MA is explained in Section III-B2.

B. Local Mapping

Whenever a keyframe is inserted, the local mapping thread
refines recent keyframe poses and landmarks by a multi-graph
optimization process. Furthermore, this thread also estimates
the reference MA, if required. Finally, redundant keyframes are
culled using the strategy introduced in [2]. Further details can
be found next.

1) Local Map Optimization: Once keyframe k is generated,
the local optimization procedure refines its pose along with
the poses of a set of connected keyframes Kc obtained from
a covisibility graph [2] and all the map points P and lines L
seen by those keyframes. Other keyframes that observe these
points and lines but are not connected to k, denoted by Kf , are
included in the optimization, but their poses remain fixed. We
denote Pk and Vk as the sets of matches between, respectively,
points and lines in P and L and features in keyframe k. To
introduce the structural constraints of the scene into the opti-
mization, we define Lk

⊥ and Lk
‖ as the sets of perpendicular

and parallel pairs of lines in L, respectively, co-observed in
keyframe k. Finally, we denote as M the set of map lines that
are associated to a MA and that are seen by any keyframe in Kc.
DefiningΓ = {Pw

i , Lw
j , Rl, tl, |i ∈ P, j ∈ L, l ∈ Kc} as the set

of variables to be estimated, the optimization problem is defined
as:

Γ = argmin
Γ

⎡
⎣ ∑
k∈{Kc∪Kf }

⎛
⎝∑

i∈Pk

ρ (Ep
i ) +

∑
j∈Vk

ρ
(
El

j

)
⎞
⎠

+
∑
z∈Kc

⎛
⎝ ∑

(i,j)∈Lz
⊥

ρ
(
E⊥

i,j

)
+

∑
(i,j)∈Lz

‖

ρ
(
E

‖
i,j

)⎞⎠

+
∑
j∈M

ρ
(
E

‖
j,Mj

)⎤⎦ (10)
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where E⊥
i,j , E

‖
i,j , Ep

i and El
j were respectively defined in

(4), (5), (8) and (9), and the MA alignment error E
‖
j,Mj

is
the error term corresponding to a map line j and its associated
Manhattan axis Mj ∈ M, calculated using (5).

2) Manhattan Axes Estimation: As already said, the Man-
hattan Axes comprise a set of three orthogonal directions, in
world coordinates, which represent the main scene directions.
These directions remain fixed over time and, therefore, the MA
extraction procedure is performed only once during the whole
sequence. Their estimation should be very accurate to prevent
misalignments during optimization steps. In this respect, this
work proposes a coarse-to-fine MA estimation strategy, where
the estimation at the coarsest level is obtained extending the work
by Kim et al. [10]. The estimated MA are then refined by con-
sidering multiple line observations along different keyframes.

For a start, a first estimation of the MA is computed from the
first keyframe once it is available using the Mean Shift-based
method proposed in [10]. In this first stage, the only features
involved are the line direction vectors and the surface normal
vectors for a selection of points defined over a grid. The normal
vectors are calculated using a modified version of the approach
proposed in [22], which is based on integral images to speed up
calculations. This procedure is repeated for the next keyframes
until valid, though typically noisy, MA are obtained.

Once the local map comprises a sufficient number of
keyframes, being denoted by KM , a non-linear optimization
procedure is performed in a second MA refinement stage, using
hence the inaccurate MA computed in the first stage as initial
guess. Given M as the set of MA, and defining V MAi

k as the set
of map lines associated to the Manhattan axis MAi observed in
keyframe k, the optimization problem can be stated as follows:

M = argmin
M

∑
k∈KM

⎛
⎜⎝

∑

j∈V
MA0
k

ρ(EMA0
j ) +

∑

j∈V
MA1
k

ρ(EMA1
j )

+
∑

j∈V
MA2
k

ρ(EMA2
j )

⎞
⎟⎠ , (11)

where the error term of a line j associated to the axis Mj ∈ M
is given by:

E
Mj

j = E
‖
j,Mj

+E⊥
j,Mj′ +E⊥

j,Mj′′ , (12)

being Mj′ and Mj′′ the two other MA non-associated to line j.
These two last terms enforce the orthogonality among the finally
resulting axes. We reduce further the orthogonality error of the
MA by means of Singular Value Decomposition (SVD), as also
performed in [9], [10], [13].

IV. EXPERIMENTAL RESULTS

To demonstrate the performance of MSC-VO, we conduct
various experiments in both synthetic and real image sequences.
Additionally, we compare its localization accuracy with some
state-of-the-art VO and visual SLAM systems by means of the
following datasets:

Fig. 4. (left) The MA maybe absent in a scene, e.g. a frame of the fr3-longoffice
sequence. (right) Trajectory estimated by MSC-VO for this sequence, where no
tracking failures are observed.

1) ICL-NUIM [23]: This is a synthetic dataset which com-
prises two main scenes, the living room and the office,
coined in our experiments as lr and of , respectively.
Furthermore, this is an indoor dataset with large struc-
tured areas, where the MW assumption and the structural
constraints are highly present. Additionally, this dataset
involves some low-textured challenging elements such as
floors, ceilings and walls.

2) TUM RGB-D benchmark [24]: This is also an indoor
dataset that contains several sequences with different struc-
ture, illumination and texture conditions. Unlike ICL-
NUIM, this is a noisy dataset since a real RGB-D sensor
was used.

3) TAMU RGB-D [25]: This dataset contains several in-
door sequences, among which we employ Corridor-A and
Entry-Hall to validate the final trajectory error (the travel
distances are, respectively, 82 m and 54 m).

Regarding the MSC-VO parameters, we have used the default
values provided by ORB-SLAM2 authors for the common parts,
whereas the remaining parameters have been set experimentally
from a single dataset, and they have been kept unaltered for the
rest of sequences.

To evaluate the overall performance of MSC-VO, for the ICL-
NUIM dataset and the TUM RGB-D benchmark, we use the
Root-Mean-Square Error (RMSE) of the Absolute Trajectory
Error (ATE) expressed in meters, as computed by the RGB-
D TUM benchmark tools [24]. Regarding the TAMU RGB-D
dataset, we provide the Trajectory Endpoint Drift (TED) [25],
computed as the Euclidean distance between the starting and
end points of the path. All the experiments have been performed
on an Intel Core i7-9750H @ 2.60GHz / 16 GB RAM, without
GPU parallelization.

A. General Performance

For a start, Fig. 4 illustrates the fact that the MA may be absent
in a scene, leading to tracking failures for some solutions. In the
case of MSC-VO, the fact of involving the MA only in local
map optimizations can prevent these failures from occurring. In
Fig. 4 (left), we show a frame of the fr3-longoffice sequence,
for which the MW assumption is not very appropriate. In the
image, green, red and blue colours denote the correspondences
of a line with a single Manhattan axis, whereas yellow is for 3D
lines that do not correspond to any axis and orange is for lines
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TABLE I
RMSE OF THE ATE OF MSC-VO (IN METERS)

Fig. 5. Rotation and translation error over time for PL-VO and MSC-VO on
the fr3-longoffice dataset.

TABLE II
TED ON THE TAMU RGB-D DATASET (IN METERS)

whose 3D position has not been estimated. Fig. 4 (right) shows
that MSC-VO can estimate the whole trajectory.

Next, we compare several versions of MSC-VO to show the
effect of the different contributions: PL-VO is the part of MSC-
VO that just combines point and line features; PL-VO-Depth
combines PL-VO with the proposed 3D line endpoint estimation
method; MSC-VO-OR corresponds to a modified version of the
proposed solution, where, if a line is associated with an MA
and, at the same time, it includes structural constraints, only
the MA constraints are considered during the optimization (10);
finally, the last case is the full version of MSC-VO. Estimation
performance results for multiple sequences can be found in
Table I. Moreover, Fig. 5 illustrates the rotation and translation
error over time for PL-VO and MSC-VO on the fr3-longoffice
dataset. Taking PL-VO as the baseline, MSC-VO reduces on
average 76.5% and 80% the rotation and translation errors for
this dataset.

Table II reports on the TED for each version of MSC-VO
for the TAMU RGB-D dataset to assess its performance in long
sequences. It is noticeable that each variation of our approach
helps to reduce the accumulated drift along the trajectory.

TABLE III
MEAN EXECUTION TIMES (TUM RGB-D BENCHMARK)

TABLE IV
COMPARISON WITH OTHER APPROACHES (TED IN METERS)

On the other side, Fig. 6 shows local maps from the same cases
as above for the fr3-longoffice sequence. The first and second
plots result from, respectively, PL-VO and PL-VO-Depth. In
the former case, noise from lines depth calculation affects the
local map and, consequently, also the pose estimation accuracy.
In the second case, this noise is of a lower magnitude, but pose
inaccuracies are still observed. The third plot results from MSC-
VO with the best local map and the highest localization accuracy.
These results show that the local map optimization procedure not
only improves the camera pose accuracy, but also refines the map
lines. As a result, the misalignment that affects the PL-VO-Depth
case is notably reduced. To conclude, the fourth plot shows the
trajectories from each approach together with the ground truth,
for a further understanding of the pose accuracy achievable on
each case.

To finish, average running times for the main stages of
MSC-VO can be found in Table III. The averages result from
three different sequences of the TUM RBG-D benchmark. As
expected, adding line features into point based VO or SLAM
methods improves the accuracy and the robustness, though at
the expense of increasing the computational complexity [4].
In more detail regarding our solution: (1) the robust fitting
method used for 3D line pose estimation increases the low times
required to extract line features and adds execution time to the
feature extraction stage over other solutions; (2) regarding MA
estimation, its execution time is high due to 180.4 ms that are
required by the coarsest estimation step, although it needs to be
computed only once (in scenarios where the MW assumption
holds); and (3) despite local map optimizations require more
time than other, more traditional methods based on local bundle
adjustment, it can still be fast enough, as they run in a parallel
thread. As a general comment, the final frame rate achieved is
around 18 Hz.

B. Comparison With Other Solutions
Table V compares MSC-VO regarding localization accuracy

with other state-of-the-art approaches, for which the results
reported in the original works are reproduced. Best performances
are indicated in bold, whereas the second best is shown in bold
blue, n.a. refers to a not-available value, and× reports a tracking
failure. The left side of the table reports on solutions based
on the MA assumption that do not perform any global map
optimization or loop closure detection (LCD), while the right
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Fig. 6. (left) Local maps for the fr3-longoffice sequence and different versions of MSC-VO: 1st – only using points and lines (PL-VO), 2nd – PL-VO using the
proposed line depth extraction procedure (PL-VO-Depth), 3rd – full MSC-VO. (right) 2D trajectories for PL-VO, PL-VO-Depth and MSC-VO, respectively shown
in blue, green and red, and the ground truth in dashed grey.

TABLE V
RMSE OF THE ATE FOR MSC-VO AND OTHER STATE-OF-THE-ART APPROACHES (IN METERS)

× and n.a. respectively stand for tracking failure and not available value. The best result for each sequence is shown in bold orange and the second best in bold blue.

side of the table is for solutions that benefit from those stages.
As can be observed from the ICL-NUIM dataset, the proposed
method, which only uses point and lines, achieves competitive
results in contrast to other methods that rely on points, lines
and planes, such as [13], [14]. Conversely, from the fr1 and fr2
sequences, we observe that methods relying on planes are not
able to correctly estimate the MA. This is due to the fact that
these methods fail to find or track orthogonal planes along the
sequence. Contrarily, our approach can estimate the MA on these
scenarios, except for the fr2-desk sequence, although the struc-
tural constraints are fully applicable in this sequence, allowing
our approach to remain operational and outperform the rest of
solutions. MSC-VO produces a tracking failure in the snot-near
sequence. We do not observe this behaviour in works relying on
planar features, due to the continuous presence of orthogonal
planes in the sequence. It is noteworthy that MSC-VO compares
favourably with more sophisticated solutions (right side of the
table) even without global map optimization or LCD stages.

Finally, Table IV compares the performance of MSC-VO with
other solutions in long sequences. On the one hand, we have
observed that in the Corridor-A sequence most part of the error
is due to tracking failures: in these cases, the proposed local
map optimization can not fix the problem since no lines are
detected in the axis where the errors take place. Despite this
is not a common situation, we consider that planes can help to
avoid this behaviour due to the continuous detection of the floor.
However, it is important to remark that this dataset contains
noisy depth data, which highly affects plane detection, and,

therefore, the MA assumption does not hold for all frames. As
an example, [13] tracks the pose using the MA assumption in,
respectively, 15.1% and 12.5% of the frames of Corridor-A and
Entry-Hall. However, MSC-VO uses the MA assumption in all
the frames that at least contain one single line associated to an
MA, which represents 100% of the frames in both sequences.

V. CONCLUSION AND FUTURE WORK

In this work, we have described MSC-VO, a VO that improves
camera pose estimation accuracy in human-made environments.
This is achieved by a combined point and line VO approach
that leverages the structural regularities of the environment as
well as the satisfaction of the MW assumption. On the one
side, the structural constraints are used to improve line depth
extraction and MA estimation. On the other side, these structural
constraints are combined with point and line reprojection errors
together with the MW assumption for local map optimization.
All these contributions have been shown to increase the accuracy
of 3D map lines position estimation and the computed trajectory
for MSC-VO. Furthermore, contrary to other state-of-the-art
works that use the MW in the tracking stage, our pipeline is
designed to deal with the absence of the MA, allowing us to
work in a wider range of environments.

Regarding future work, we plan to integrate MSC-VO with an
incremental loop closure detection strategy. We are also intent
to make use of the structural constraints and the MA alignment
for global map optimization.
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VINSEval: Evaluation Framework for Unified Testing of Consistency
and Robustness of Visual-Inertial Navigation System Algorithms

Alessandro Fornasier1, Martin Scheiber1, Alexander Hardt-Stremayr1, Roland Jung1 and Stephan Weiss1

Abstract— The research community presented significant ad-
vances in many different Visual-Inertial Navigation System
(VINS) algorithms to localize mobile robots or hand-held de-
vices in a 3D environment. While authors of the algorithms of-
ten do compare to, at that time, existing competing approaches,
their comparison methods, rigor, depth, and repeatability at
later points in time have a large spread. Further, with existing
simulators and photo-realistic frameworks, the user is not able
to easily test the sensitivity of the algorithm under examination
with respect to specific environmental conditions and sensor
specifications. Rather, tests often include unwillingly many
polluting effects falsifying the analysis and interpretations. In
addition, edge cases and corresponding failure modes often
remain undiscovered due to the limited breadth of the test
sequences. Our unified evaluation framework allows, in a fully
automated fashion, a reproducible analysis of different VINS
methods with respect to specific environmental and sensor
parameters. The analyses per parameter are done over a
multitude of test sets to obtain both statistically valid results
and an average over other, potentially polluting effects with
respect to the one parameter under test to mitigate biased
interpretations. The automated performance results per method
over all tested parameters are then summarized in unified radar
charts for a fair comparison across authors and institutions.

SOFTWARE & VIDEO

The open-sourced VINSEval framework is made avail-
able via https://github.com/aau-cns/vins eval. A demon-
stration video of VINSEval is made available on
https://youtu.be/KuA3nibxWok.

I. INTRODUCTION

Data-driven algorithms for autonomous robotics gained
significant attention over the last years, enabling a paradigm
shift in state estimation for mobile robotic applications. This
trend allowed the robotic research community to design
and develop Visual-Inertial SLAM (VI-SLAM), Visual-Inertial
Odometry (VIO) algorithms, or, in general, Visual-Inertial
Navigation System (VINS) algorithms able to reach high per-
formance in terms of accuracy and efficiency. To do so, sim-
ulation and synthetic data have been one of the fundamental
tools for engineers and researchers during the design and
development of such algorithms. They allow fast prototyping,
safe, and inexpensive testing without dealing with real-world
experiments and hardware issues in the early development
stages. Further, simulations provide high repeatability of data
and the precise control of various parameters. Despite the
progress made to let state-of-the-art estimation algorithms
reach high performance in terms of accuracy with respect
to commonly used error metrics (i.e., Absolute Trajectory

1Control of Networked Systems, University of Klagenfurt, Austria
{firstname.lastname}@ieee.org

Fig. 1. Views of different rendered scenes. Top row, left to right: a scene
with a grass ground texture and stones providing informative visual features,
with no camera distortion and with fisheye lens distortion. Bottom row, left
to right: a scene with a cement self-similar ground texture and no informative
visual features, with low illumination, and with optimal illumination.

Error (ATE), and Relative Trajectory Error (RTE)), current
VINS solutions still lack in robustness and consistency. In
addition, as more and more such methods are presented
by the community, the lack of a unified comparison and
benchmarking tool starts to become an important issue.

Motivated by the shortcomings in robustness and consis-
tency in VINS methods, and in particular the upcoming era
of research dubbed robust-perception-age [1], in this paper,
we present VINSEval: a fully automated photo-realistic vi-
sual and inertial data generation, simulation, and estimator
evaluation framework for fast VINS development, improve-
ment, and unified comparison. VINSEval has two core ca-
pabilities: (i) For researchers to speed up the prototyping
and development of consistent and robust VINS algorithms
through the capability of generating setups and data with very
specific parameters and parameter changes, and (ii) for both
researchers and end-user engineers to evaluate and compare
the performance of VINS algorithms in terms of consistency
and robustness in a unified, fully automated fashion over a
large set of parameter sweeps. VINSEval is not only general
in that sense, but it also allows the generation of very specific
edge-case scenarios where VINS can be tested in. Each
scenario has unique visual characteristics and requirements,
and we believe providing a framework for understanding the
constraints therein is critical when assessing performance
and guiding subsequent development. State-of-the-art VINS
benchmarking approaches tend to ignore differences between
individual scenarios leading to solutions that only partially
address end-user needs. They rather focus on system-level
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Fig. 2. Robustness overall score and Breaking Point (BP) of the VINS algorithms under examination with increasing difficulty levels for each of the
considered environmental and/or sensor parameters. The BP per parameter is visually defined as the level next to the the corner of the polygon.

performance and accuracy but overlook that none of these
error metrics, when uncontextualized, indicate how well a
VINS algorithm could perform on a given specific scenario.

The multiple key contributions of the presented work are:
Unified statistical evaluation framework: To the best of our
knowledge, VINSEval is the first work that provides a frame-
work to evaluate with statistical relevance the consistency
and robustness of VINS algorithms in a fully automated
fashion over a multitude of parameters and parameter ranges.
Sample evaluation: We demonstrate how VINSEval can
statistically compare the consistency and robustness of four
state-of-the-art algorithms when applying parameter sweeps
over (i) amount of features seen, (ii) illumination conditions,
(iii) IMU noise values, and (iv) sensor time delay. The results
are automatically summarized in radar-charts in Fig. 2 for
quick information access with minimal user effort.
Extensibility: VINSEval is an easily extendable framework.
This is true for the photo-realistic scene, different parameter
sweeps, and different evaluation parameters that can further
be included. All such extensions are directly included in the
fully automated evaluation process enabling VINSEval as a
useful tool for VINS evaluation in various different scenarios.
Flexibility and modularity: All the modules of VINSEval
are modular and flexible. Indeed the data provided as input
to the core of VINSEval can be either synthetically generated
or recorded from a real platform. The rendering module then
allows automated changes of the rendered scene and flexi-
bility to manipulate rendering parameters, UAV parameters,
and sensors noise specifications online.

II. RELATED WORK

With particular regard to UAVs, Hector Quadrotor [2] and
RotorS [3] are Gazebo simulators that allow the user to
simulate different types of multi-rotor UAVs with specific
sensors such as IMU, LIDAR and camera. These environ-
ments do not provide photo-realistically rendered camera
images – an issue addressed by AirSim [4]. This work pro-
poses a software-in-the-loop simulation with popular flight
controllers such as PX4 and ArduPilot and hardware-in-
loop for physically and visually realistic simulations. Re-
cently [5] and [6] published their work FlightGoggles and
Flightmare, respectively, which are both ROS-based open-
source photo-realistic simulation framework for MAVs. They
mainly differ from AirSim by having fewer rigid structures
and an integrated physics engine for dynamics simulation.
InteriorNet [7] proposes an end-to-end pipeline for an RGB-

D-inertial benchmark in large-scale interior scene under-
standing and mapping. The trajectories, the scenes, and
rendering parameters have a high level of customizability.
However, the simulator lacks flexibility as it is limited to
a fixed set of indoor scenes and CAD models of indoor
furniture. The authors in [8], [9], [10] presented SlamBench
(currently at version 3) which is a dataset- and sensor-
agnostic framework for qualitative, quantitative, and easily
reproducible evaluation for accuracy and computation time
of SLAM systems with plug-and-play algorithm support.
SlamBench incorporates a wide range of error metrics,
datasets, and evaluation tools for different SLAM algorithms.
However, its flexibility is limited since it does not provide
a way to generate individual data for a specific scenario.
Its focus is on the evaluation of computational complexity
and estimation accuracy, not on robustness and consistency.
Regarding robustness, the authors in [11] proposed a charac-
terization of state-of-the-art SLAM benchmarks and methods
by comparisons of the performance of different SLAM algo-
rithms. They use publicly available datasets, at both real-time
speed and slo-mo playback, clustering the results into four
classes denoted fail, low, medium, and high. Furthermore,
the authors in [12] proposed firstly new datasets for wheeled
robots, including different locations, day-night shifts, moving
objects, and poor illumination, and second a new metric for
robustness evaluation based on a judgment of ”correctness”
through an empirically chosen threshold on the ATE. Like the
previously cited SlamBench, the last works’ main weakness
is the limited flexibility, controllability, and scalability of
the data without automated procedures, limiting the possible
usage for statistically relevant large scale tests on robustness
and consistency.

III. FRAMEWORK ARCHITECTURE

The core of the VINSEval framework architecture, shown
in Fig. 3, is organized as a Robot Operating System (ROS)
package and is composed by two fundamental software
modules: the Data Generation Module (cyan block) and
the Estimators Evaluation Module (red block). The former
takes as an input a given generated trajectory file containing
timestamped ground-truth poses, velocity, and acceleration
measurements that could be either noisy (e.g., recorded
from a real platform equipped with an IMU and a motion
capture system) or noise-free (e.g., synthetically generated).
The input data is then processed and used to produce ROS
bagfiles of sensor data for the other module, whose primary
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Fig. 3. Framework architecture overview: the full pipeline is composed
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and photo-realistic images given a set of trajectories while in red is
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robustness evaluation of estimators with the generated data.

objective is to run different VINS algorithms and provide a
statistical evaluation of robustness and consistency.

A. Data Generation Module

The data generation module is divided into four sub-
modules. The logic unit directs all the other submodules
by providing them with control signals and parameters.
Upon the logic unit’s start signal, the input data handler
takes the provided trajectory file as input and parses it. If
the data contain noise-free IMU measurements, the input
data handler adds noise and biases, for which statistics
are provided as parameters following the inertial sensor
model described in [13]. This data is then published as
ROS messages to be used by subsequent submodules. The
rendering unit is derived from the photo-realistic simulation
framework FlightGoggles [5] with our extended capabilities
such as the introduction of a fisheye distortion model for
the camera lens, a variable time delay on the image header
timestamp, and rendering parameters that allow changes of
the visual attributes (e.g., illumination, objects distribution,
etc. . . See Sec. V) in the scene. The rendering of photo-
realistic camera images can be set to either asynchronous,
such that the camera images are rendered in real-time at
a frame rate dependent on the machine’s performance, or
synchronous, such that the camera images are synchronized
with the given trajectory poses. Note that this modularization
of the input data handler and the rendering unit allows for
proprioceptive data from real systems (i.e., robot motion)
to be used for a virtual rendering of precisely controlled
exteroceptive measurements (i.e., camera image). The last
submodule of the data generation module is the output data
handler, which manages to start and stop recording the data
into bagfiles when triggered by control signals from the logic
unit. It automatically applies a realignment of the bagfiles
substituting the wall time with the header time.

B. Estimators Evaluation Module

The statistical evaluation toolbox module of VINSEval
consists of different submodules such as (i) the conversion
of estimated trajectories to CSV files, (ii) finding associa-
tions between two trajectories based on their timestamps,
(iii) spatial alignment tools to align the estimated trajectory
with the true trajectory supporting different alignment types
as in [14], (iv) absolute trajectory error evaluation based
on associated and aligned trajectories, and finally (v) the
computation of the Normalized Estimation Error Squared
(NEES) and Average NEES (ANEES). On top of these, the
estimator evaluation module supports an automated evalu-
ation of different scenarios and multiple experiments and
automated report generation.

IV. ERROR METRICS AND ESTIMATORS EVALUATION

Before we detail our approach on defining the different
parameters to test for and their sweeping range, we first
define what we understand under consistency, credibility, and
robustness and explain the associated error metrics.

A. Consistency and Credibility

Estimators such as least-squares and Kalman filters pro-
vide assessments in terms of their error covariance matrix or
Mean Squared Error Matrix (MSE) and the estimated state.
The estimation error εj = x̂j − xj ∈ Rk is the difference
between estimated and actual true value. The NEES is a
commonly used metric that normalizes the scalar magnitudes
of the estimation error εj based on the error covariance Pj

‖εj‖2P−1
j

= εTj P
−1
j εj ∈ [0,∞]. (1)

The NEES is assumed to be χ2 distributed with k degrees
of freedom and a mean of k. Therefore, a chi-square signifi-
cance test can be performed to judge if an estimator violates
a certain credibility threshold [15]. A too low or too high
NEES, depending on k, indicates under- and overconfidence,
respectively. As the ground-truth is needed, the NEES is
typically computed offline using M Monte Carlo simulations
and then averaged over the M runs and normalized with
respect to the state dimension k resulting in the ANEES:

ANEES =
1

kM

M∑
m=1

‖εjm‖2P−1
jm

. (2)

For our evaluation, we propose to compute the NEES, the
mean of the NEES, over the time span of each trajectory
with D time steps, and then the ANEES as follows:

ANEES =
1

kM

M∑
m=1

1

D

D∑
j=0

‖εjm‖2P−1
jm

. (3)

Computing the NEES reduces the significance of sporadic
spikes that occur typically at the initialization phase until
the filter starts to converge. Based on the ANEES and a
credibility threshold, e.g., a probability interval of 99%, we
classify estimators to be credible or not. If the credibility
threshold is reasonably high and violated, we assume the
filter to be inconsistent.



B. Robustness

”Robustness is the ability to withstand or overcome ad-
verse conditions.” – [from online dictionary]. In the context
of VI-SLAM and VIO, we can say that a robust estimator
is resistant to deviations from the assumptions of optimal
conditions. Hence if the assumptions are only approximately
met, the estimator still has a reasonable performance. Con-
trary to estimator credibility, finding a metric to judge
the robustness of a given estimator is particularly difficult.
Here, we adopt a simple metric based on the Root Mean
Square Error (RMSE) to define the so-called Breaking Point
(BP). Consider a given visual attribute (e.g., the illumination
in the scene) that is changed L times from the optimal
condition with an increasing amount of changes towards a
bad condition. The BP is the point along the scale of change
at which a given estimator breaks. Thus, for each attribute
value change, the average RMSE of the ATE is computed.
The RMSE is then compared to an empirical threshold to
distinguish whether the estimator has broken or not.

V. ENVIRONMENT AND PARAMETER SETUP

As mentioned in Sec. III the rendering module inherits
all the capabilities of FlightGoggles [5] and thus the various
other types of exteroceptive sensors (other than camera and
IMU) such as RGB-D cameras, IR beacon sensors and
time-of-flight range sensors for which intrinsic, extrinsic
parameters and noise specification can be easily adjusted.
Moreover we added options for variable sensor time delays
and online parameter adaptations in the scene and the system.
We also extended the default pinhole camera model with
a realistic fisheye lens based on the atan model [16]. To
improve runtime efficiency the undistortion of each output
pixel is calculated at startup and saved in a lookup table,
given the diagonal distortion parameter s as described in
[16]. However, the undistorted pixel values are most likely
non integer values. Therefore the average color value is
calculated at runtime with Eq. (4). C

(
pd(j, i)

)
is the color

value of the distorted integer pixel pd(j, i), pu(j, i) its
corresponding undistorted non-integer pixel value. C

(
p
u

)
is

the lower-left, C
(
pu
)

the upper-left, C
(
pu+1

)
the upper-

right, and C
(
p
u+1

)
the lower-right surrounding undistorted

pixel color values. δx and δy are the differences between the
lower-left (integer) undistorted pixel pu and the calculated
undistorted pixel pu(j, i), in x- and y-axis respectively.

C(pd(j, i)) = δx ·
(
δy · C

(
p
u

)
+
(
1− δy

)
· C
(
pu
))

+
(
1− δx

)
·
(
δy · C

(
p
u+1

)
+
(
1− δy

)
· C
(
pu+1

)) (4)

Further, this framework provides an RGBA color to
grayscale conversion based on the methods described in
[17]. This work showed that the method used to convert
colored images can greatly impact the result. Although all
methods are implemented in VINSEval, we opted to use the
Luminance method in the presented sample evaluation, as it
maps the human eye brightness perception most closely [18].

A. Estimator Parameter Setup

Although highly customizable, we suggest here a spe-
cific set of parameters and environment settings to use in
the proposed VINSEval framework to generate data and
evaluate different open source state-of-the-art VINS algo-
rithms. We generate UAVs feasible trajectories and noise-
free IMU measurements at 200Hz. Trajectories are generated
with a minimum snap trajectory generation approach, as
described by [19]. The considered VINS algorithms are:
LARVIO [20] and OpenVins [21] which are both filter-
based VIO algorithms leveraging the Multi-State Constraint
Kalman Filter (MSCKF) sliding window formulation. Both
filters allow online camera-imu calibration, zero velocity
update, different landmark parametrizations and first estimate
jacobian formulation aiming to improve the filter consistency.
ROVIO [22], [23], a fully robocentric and direct filter based
VIO algorithm which makes use of the pixel intensity errors
of image patches, aiming to achieve high level of robustness.
Vins-Mono [24], an optimization-based sliding window for-
mulation VIO algorithm aiming to provide high accuracy.
All the algorithms used in our experiments have been tuned
to get the best results in a randomly selected subset of the
whole data used. The extrinsic and intrinsic parameters of
the camera, as well as the distortion coefficient, have been
set to the correct value provided by the rendering unit of
VINSEval, and the online calibration of such parameters
was turned off. When there is a time delay between the
camera and the IMU we turn on the online estimation of such
time delay providing the correct value as an initial guess,
on the estimators that allow that. Moreover, we provide all
estimators with the correct IMU noise statistics. Regarding
the feature tracker, we similarly tuned every feature-based
algorithm to achieve best results for all involved algorithms.

B. Experiments Setup

In our experiments we have considered mainly four at-
tributes which are particularly relevant in real-world situa-
tions: (i) Changes in amount of informative visual features
(ii) Changes in illumination (iii) Changes in time delay
between the camera and the IMU (iv) Changes of the IMU
noise and noise statistics. For each of the considered at-
tributes a, we have defined L = 10 different ”difficulty” lev-
els for which increasing levels produce a more complicated
scenario for an estimator. For every single level l ∈ [1, L]
we run M = 20 different simulations where we dynamically
change all the other environmental conditions and sensor
specifications, including the attributes that are not evaluated
and other parameters such as object placement distribution
or UAV trajectory while keeping all of them in the range of
what we defined to be ”optimal”. These parameter swaps
provide randomness to the evaluation and average over-
polluting effects, leaving only the change effects in the
single attribute under consideration. Thus, sweeping over one
attribute generates 200 test runs per VINS algorithm.

For a given attribute a, the following subsections describe
how the level l has been mapped to a change of the
considered attribute, and how ”optimal” values are defined.



C. Changes in amount of informative visual features

For this attribute, we evaluate the former cited algo-
rithms’ performance when the amount of informative features
changes. We introduce an information-density parameter D,
determining the overall amount and placement of recog-
nizable features within the scene compared to either self-
similar or featureless ground. A value of 1 corresponds
to the approximation of the ideal, informative-rich scene,
while 0 will not place any objects. Values in between will
decrease the placement probability of objects linearly, with
a multiplier based on position-dependent Perlin noise. A
value of 0.5 would place half as many objects compared to
the ideal scene, with higher object densities around Perlin-
based clusters. The attribute level l influences the generated
scene twofold: a linear multiplier of the object placement
density between the maximum at the easiest and 5% at the
most challenging level as well as decreasing clustering with
growing difficulty.

D. Changes in illumination

For this attribute, the illumination of the virtual scene
changes over the different values of the level l, reducing the
illumination intensity I for a fixed window of time during the
UAV trajectory, from its optimal value to lower values as the
level l increases. The effect of decreasing the illumination in
a real-world scenario using a camera set with auto-exposure
triggers a chain reaction, which increases the camera’s ex-
posure time with the consequence of increasing the amount
of motion blur that the images will have. However, in these
experiments, we are simulating a camera with fixed exposure
time and without any simulated motion blur being applied.
Thus we aim to evaluate the estimators’ performance against
abrupt changes of the illumination intensity on the scene. We
consider the optimal value to be I = 1, corresponding to the
attribute level l = 1, which emulates a sunlight condition
on a clear day. The mapping between the attribute level l
and the illumination intensity I has been defined through a
second-order function, as follows:

I = α (l − 1)
2
+ β (l − 1) + 1 (5)

With empirical values α = 0.0137 and β = −0.23 to achieve
a fairly dark environment at the most challenging level.

E. Changes in time delay between the camera and the IMU

Let us consider the scenario for which camera images are
captured synchronously with the IMU measurements. For
time delay between the camera and IMU, we consider the
delayed image’s timestamp when the image is available to the
estimator (e.g., USB delay). Thus, in this scenario, we aim
to evaluate how estimators manage such a delay. For a given
attribute level l, the images header timestamp is defined:

tcam = timu + k
(
l (l − 1)

)
(6)

With k = 5
3000 heuristically chosen, leading to a maximum

time delay of 150ms, for l = 10 and to no delay for l = 1.

F. Changes of the IMU noise and noise statistics

The last attributes we considered within this evaluation
are the accelerometer and gyroscope noise densities and
random walk. The value changes range from a simulated high
grade IMU down to a very low-performing MEMS IMU.
For a given attribute level l the IMU noise statistics are thus
changed according to:

σ∗ = ϕ
(
10ψ(l−1)

)
lσ∗opt (7)

Where σ∗ indicates the continuous-time IMU noise densities
and random walks scaled concerning the optimum value
σ∗opt

by a scale factor. The value ϕ = 2 and ψ = 2
9

has been chosen empirically leading to the min. and max.
values reported in Tab. I. In this case, the optimal (or better,
realistic) value has been chosen to correspond to an attribute
level l = 5, in order to have IMU noise statistics in the same
order of magnitude of the majority of the MEMS IMU used
nowadays on UAVs, and to avoid cases of having an accurate
estimation even if all tracked features are lost.

TABLE I
MINIMUM AND MAXIMUM VALUES OF THE ACCELEROMETER AND

GYROSCOPE NOISE DENSITIES AND RANDOM WALKS CONSIDERED

σ∗min σ∗max

σa 1.0e−4 2.0e−1 m/s2
√
Hz

σg 1.0e−5 2.0e−2 rad/s
√
Hz

σba 1.0e−5 2.0e−2 m/s3
√
Hz

σbg 1.0e−6 2.0e−3 rad/s2
√
Hz

VI. SAMPLE EVALUATION PROCESS

For each of the previously described attributes we have
generated L×M = 200 different bagfiles of raw data, each
one containing 40Hz rendered VGA camera images and
200Hz IMU data for a UAV trajectory of 100 s, resulting
in a total of 800 different bagfiles and about 1TB of data.
With the synchronous rendering option, the data can be
generated faster than real-time, meaning more than 22 h of
data has been generated in 8 h1. The generated raw data is
then used in the estimator evaluation module (cf. Sec. III-B),
which feeds the data to the mentioned VINS estimators and
starts a, in our case 3-day long, batch run. Each estimated
trajectory corresponding to a specific attribute a, level l, run
m, and estimator e is first aligned with the corresponding
ground-truth trajectory along the unobservable dimensions
(i.e. position and yaw). Then the ARMSE and the ANEES
over the time span of the trajectory are computed for position
and orientation. This automatically generates a report at very
high detail level. As last step of the estimator evaluation, the
10% of the data, corresponding to the worst runs in terms of
normalized sum of the single error metrics, accounting for
processor-load hick-ups in the OS, have been removed. Then
a final summary report, shown in Fig. 2, 4, 5, is produced
by computing, for each attribute a and level l, the ARMSE
and ANEES over the M runs for each estimator.

1We run VINSEval on a high-performance simulation PC, however, data
generation in synchronous mode results faster than real-time even in a mid-
performance laptop.
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Fig. 4. Performance Comparison: Position and orientation ARMSE. Open-
Vins [21] in red, LARVIO [20] in cyan, Vins-Mono [24] in blue and
ROVIO [22], [23] in light red. We can notice in dashed blue that Vins-
Mono, when tested with increasing IMU noise, is failing at attribute level
l = 1 but not on further levels. Our investigation lead to the conclusion that
very low IMU noise values cause numerical issue and then lead to a failure.
We tackled the problem by tuning Vins-Mono with a falsely increased IMU
noise. A strength of our framework is precisely to reveal such edge cases.

As described in Sec. IV-B, we made use of the position
and orientation ARMSE for which we defined a threshold
to judge the failure of a an estimator. In particular, for a
given attribute a, a level l and an estimator e we define
the following binary score: alFe = True if ARMSE∗ >
TH∗ ; False if ARMSE∗ < TH∗ . Where the symbols ∗
stand either for position or orientation and TH∗ is the chosen
threshold. With about 70m trajectories, TH∗ are heuristically
set to be 0.5m for position and 5◦ for orientation. The first
occurrence of a

lFe = True for increasing values of l, will
define the BP per attribute a, per estimator e.

VII. CONCLUSION

In this paper we presented VINSEval, a unified framework
for statistical relevant evaluation of consistency and robust-
ness of VINS algorithms with fully automated scoreboard
generation over a set of selectable attributes. We showed
the ability of effective evaluation given by the flexibility
on parameter selection, the mitigation of polluting effects
through multiple runs with randomization in dimensions not
under test, and the inherent detection of edge-cases through
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Fig. 5. Performance Comparison: Position and orientation ANEES. Open-
Vins [21] in red, LARVIO [20] in cyan and ROVIO [22], [23] in light red.
Dashed are the confidence bounds. Despite our best tuning efforts, we were
not able to reproduce the ANEES for Open-Vins reported by the authors;
too little details on their method is given in [21]

the wide test span in an automated fashion. We will open-
source VINSEval making it a usable and extendable tool for
the community towards unified estimator evaluation.

As a sample VINSEval demonstration, we let a Breaking
Point score, in Fig. 2, to be generated to show how robust and
consistent current state-of-the-art algortihms are. All tested
algorithms generally exhibit low ARMSE when challenged
with increased imu-camera time delay, decreasing illumina-
tion and amount of informative features showing the ability
to compensate for dark scenes and correctly detect and track
self-similar features on the background. However, all the
algorithms show high sensitivity to IMU noise statistics, with
a tendency to fail with a low-preforming MEMS IMU. Par-
ticularly interesting, Fig. 4 shows the edge-case of numerical
errors encountered in Vins-Mono [24] when having very low
IMU noise values. Regarding credibility/consistency results,
Fig. 5, show that none of the considered algorithms can be
labeled as credible due to its under- or overconfidence and
that still much research is required towards this direction.
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LiODOM: Adaptive Local Mapping for Robust LiDAR-Only Odometry
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Abstract— In the last decades, Light Detection And Ranging
(LiDAR) technology has been extensively explored as a robust
alternative for self-localization and mapping. These approaches
typically state ego-motion estimation as a non-linear optimiza-
tion problem dependent on the correspondences established
between the current point cloud and a map, whatever its scope,
local or global. This paper proposes LiODOM, a novel LiDAR-
only ODOmetry and Mapping approach for pose estimation
and map-building, based on minimizing a loss function derived
from a set of weighted point-to-line correspondences with a
local map abstracted from the set of available point clouds.
Furthermore, this work places a particular emphasis on map
representation given its relevance for quick data association.
To efficiently represent the environment, we propose a data
structure that combined with a hashing scheme allows for fast
access to any section of the map. LiODOM is validated by
means of a set of experiments on public datasets, for which it
compares favourably against other solutions. Its performance
on-board an aerial platform is also reported.

I. INTRODUCTION

Self-localization and mapping, either performed simulta-
neously or in a sequential fashion, are crucial abilities for a
mobile robot to be useful in relevant applications, irrespective
of whether the robot operates fully autonomously or in a
semi-autonomous way. As stated many years ago, odometry
estimation is a fundamental piece within this framework. A
plethora of sensing devices have been adopted throughout the
years, comprising tachometers/wheel encoders, inertial and
heading sensors, time of flight sensors, and motion estimation
devices, to name but a few. Among all of them, laser scanners
and, for a few years now, cameras have turned out to
be the sensors of choice. The latter have been extensively
used [1], [2] due to the rich perception of the surrounding
world encoded in images. Vision-based estimation is however
sensitive to lighting conditions, have a limited horizontal field
of view and require additional calculations to acquire depth
and shape perception. In contrast, 3D laser scanners provide
a 360-degree overview of the platform surroundings, supply
reliable range estimations and, especially motivated by the
development of self-driving cars, recently have become an
affordable choice for pose estimation and mapping.

LiDAR odometry is typically stated as an optimization
problem that is solved using the Iterative Closed Point (ICP)
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Fig. 1. Example of map produced by LiODOM (KITTI 05 sequence),
comprising an unoptimized global map generated during navigation (in
white) and a local map (in red) that is retrieved according to the position
of the vehicle, to be used for next pose estimation.

algorithm [3] or any of its variants. For this to happen
in a satisfactory, fast and accurate way, a set of reliable
correspondences between the current point cloud and a map
must be found. A KD-tree is a popular choice to represent the
whole map [4], although the resulting performance degrades
as the number of points to be managed increases, what makes
necessary a filtering step to screen most relevant points. An
alternative is to build a local map using a sliding window [5],
[6], although this might discard useful associations that could
be found if the search was performed over a global map.

This paper proposes LiODOM, a novel LiDAR odometry
and mapping approach that is able to estimate the pose
without additional sensors, e.g. IMU and/or GPS, unlike
other recent approaches [5], [6]. Our approach is formulated
as a non-linear optimization problem based on a set of point-
to-line constraints, weighted according to the distance from
each point to the sensor center. Furthermore, we propose
an efficient data structure, based on a hashing scheme, to
represent the map. As a result, a local map can be retrieved
according to the pose of the robot in an effective way,
and point cloud correspondences against the local map can
be efficiently established. This adaptive solution naturally
allows us to find correspondences between the current point
cloud and revisited places (contrary to just using a sliding
window). Figure 1 illustrates the performance of LiODOM.

In brief, the main contributions of this work are:
• A LiDAR-only odometry framework, inspired by the

principles of LOAM [4]. It is based on an optimization
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problem supported by weighted point-to-line factors
computed from the correspondences with the local map.

• A fast and efficient hash-based data structure for map-
ping, speeding up searches and gracefully updating on
large-scale maps.

• An extensive evaluation of the proposed approach on
several public datasets, including a comparison with
other state-of-the-art methods. Its performance on-board
an aerial platform is also reported.

• As an additional contribution, we make available to the
community the source code1 of our approach.

The rest of the paper is organized as follows: Section II
overviews most relevant works in the field; the proposed
framework is introduced in Sections III, IV and V; Sec-
tion VI reports on the results obtained; to finish, Section VII
concludes the paper and suggests future research lines.

II. RELATED WORK

Most recent approaches carry out LiDAR-based odometry
in combination with an IMU for higher accuracy. These
solutions are typycally regarded as loosely- and tightly-
coupled methods [6], [7]. Loosely-coupled methods estimate
the state from each sensor separately. Arguably the most
well-known method that falls into this category is LiDAR
Odometry and Mapping (LOAM) [4], where edges and
surfaces are detected and registered to a map through point-
to-line and point-to-plane constraints within an optimization
framework. In LOAM, an IMU can be optionally used to
de-skew the input point cloud and provide a prior motion
estimate. LOAM extensions proposed to be used specifically
on ground vehicles or with solid-state LiDARs can be found
in, respectively, [8] and [9]. More recently, a lightweight
LOAM version named F-LOAM [10] has been proposed.
This is probably the closest work to our solution. In this
respect, LiODOM introduces a simpler but efficient pose
optimization scheme and a novel mapping approach, result-
ing into more robust estimations, as shown in Section VI.
Another option in this class is to fuse sensor data by means
of an Extended Kalman Filter (EKF) [11], [12].

Tightly-coupled methods fuse sensor data jointly, either
through optimization [5], [6] or filtering [7], [13]. In this
regard, Ye et al. [5] introduces LIOM, a tightly-coupled
odometry and mapping approach which jointly minimizes
LiDAR and IMU observations in a sliding window. De-
spite its good performance, it is computationally expensive,
making difficult its use in practical situations. In a more
recent work [7], the same authors opt for an iterated Error-
State Kalman Filter (ESKF), resulting into a faster solution.
A recent work [6] introduces LIO-SAM as a new tightly-
coupled method. In LIO-SAM, LiDAR-inertial odometry is
stated as a factor graph, allowing to easily incorporate any
type of observation as a constraint, such as loop closures,
GPS or IMUs. Unlike the approaches surveyed so far, we
tackle the problem of pose estimation using solely a LiDAR.

1http://github.com/emiliofidalgo/liodom
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Fig. 2. Overview of LiODOM.

As mentioned above, establishing a set of correspondences
between the input scan and a map is of prime importance
for efficient pose estimation. Some authors have opted for
indexing the points of a global map using a tree-based ap-
proach [4], although usually these solutions do not scale well.
In our work, the global map is devised as a disjoint partition
of the 3D space, and, inspired by other approaches [14],
[15], it is indexed using a hashing scheme. An alternative for
fast data association is building a local map from an sliding
window [5], [6], instead of matching directly to a global map,
but this option tends to discard useful correspondences. In
this matter, our approach also introduces an adaptive local
map mechanism, which can be seen as an alternative to the
classical local mapping paradigm.

III. SYSTEM OVERVIEW

For a start, we define a sweep as a set of 360-degree 2D
scans. A sweep received at time i is denoted as Si. We also
define two coordinate systems: (1) L, the LiDAR coordinate
system, which is a frame attached to the geometric center
of the sensor; and (2) W , the world coordinate system,
which coincides with L at the beginning. We denote by
TA
B ∈ SE(3) the transformation that maps a point pB ∈

R3 expressed in B to a point pA ∈ R3 expressed in A.
The rotation matrix and the translation vector of TA

B are
respectively denoted by RA

B ∈ SO(3) and tAB ∈ R3.
Figure 2 illustrates LiODOM. As in other works [4], [5],

our solution consists of two main components, odometry
and mapping, which run concurrently: while the odometry
module (Sec. IV) computes a set of features, i.e. LOAM
edges, from Si and estimates the current pose of the LiDAR
TW
Li

, the mapping module (Sec. V) registers the resulting
edges to a global map and generates an adaptive local map
to be employed in the subsequent pose estimation step.

IV. LIDAR ODOMETRY

The LiDAR odometry module is, in turn, structured in
two synchronized execution threads to decouple feature
extraction from pose estimation. Both are described next.

A. Feature Extraction

For a start, each sweep Si is divided into its different
scans, discarding at the same time those points whose range
do not fall within a certain interval [rmin, rmax], which has to
be configured accordingly to the sensor operating and noise
characteristics. Each pre-processed scan is next considered,



Algorithm 1 LiDAR Odometry
Input: Si, TW

Li−1
, TW

Li−2
, mi−1

Output: EL
i , TW

Li

1: EL
i ← set of edges from Si

2: T W
Li
← T̂ W

Li
≡ initial transformation estimate [Eq. (6)]

3: for n iterations do
4: for pLi

j ∈ EL
i do

5: pWj ← TW
Li
pLi
j [Eq. (1)]

6: N(pWj )← 5 NN of pWj in mi−1

7: if N(pWj ) is a line then
8: Compute de(pWj , l(pWj )) [Eq. (2)]
9: Compute residual %e(pWj , l(pWj )) [Eq. (3)]

10: Add residual %e(pWj , l(pWj ))
11: to the optimization problem
12: Optimize pose TW

Li
[Eq. (5)]

selecting a number of key points to reduce the computational
requirements. In this regard, points on sharp edges or on
locally planar surfaces are the choice in most cases, e.g.
LOAM features, given their utility for the intended purpose
and their simpler computation [4]. In this work, we have
observed that using only edges is a good trade-off between
accuracy and efficiency. To select the best features, a local
smoothness measure c is calculated for each point, as in [4].
Moreover, to distribute edges throughout the environment,
a scan is further divided into equally-sized sectors, and a
maximum number of edges is set for every sector. Unlike [4],
we split each scan into 8 sectors and choose a maximum of
10 edges per sector after sorting them in decreasing order of
curvature c. Furthermore, the selection applies non-maxima
suppression, i.e. a point is chosen as an edge if none of
its neighbours has been already selected. The result of this
procedure is a set of edges EL

i chosen from sweep Si.

B. Pose Optimization

Let us consider the transformation TW
Li

from the LiDAR
at time i to the world. Then, every point pLi

j ∈ EL
i projects

into the world frame W as:

pWj = TW
Li
pLi
j = RW

Li
pLi
j + tWLi

, (1)

being RW
Li

and tWLi
the respective rotation matrix and trans-

lation vector of TW
Li

. We denote the set of transformed edges
as EW

i . Subsequently, a set of point-to-line correspondences
between EW

i and a local map are computed for pose esti-
mation. We have opted for this solution rather than using,
for instance, a global map, because it turns out to be more
computationally stable as more frames are processed. In
LiODOM, that local map is not built after pose estimation
in a sequential way as in [5], [6], but it is built concurrently
with pose estimation by the mapping module (see Section V).

Let us assume now the existence of a local map mi−1 at
time i− 1, which is a subset of the global map Mi−1. This
map mi−1 contains the points in Mi−1 closest to the LiDAR
according to the latest pose estimate TW

Li−1
. For each point

pWj ∈ EW
i , we obtain the k nearest points in mi−1, where

k = 5 in this work. Let us denote this set as N(pWj ) and the
n-th nearest neighbour of pWj as Nn(pWj ). We next assess
whether points in N(pWj ) are aligned by analyzing their
scatter matrix [9]. If the largest eigenvalue of this matrix is, at
least, three times the second largest eigenvalue, we consider
that a valid point-to-line correspondence can be established
between pWj and the line l(pWj ) resulting from N1(pWj ) and
N2(pWj ). We then calculate the point-to-line distance de as

de(p
W
j , l(pWj )) =

∥∥(pWj −N1(pWj )
)
×N12

∥∥
‖N12 ‖

, (2)

with N12 = N1(pWj )−N2(pWj ).
LiODOM, as an odometer, optimizes only the current pose

of the LiDAR TW
Li

. Within the optimization framework, each
correspondence provides a constraint between TW

Li
and the

local map mi−1, whose residual %e is computed as:

%e(p
W
j , l(pWj )) = ωj de(p

W
j , l(pWj )) , (3)

where ωj is a weighting term computed as:

ωj = 1− rj − rmin

rmax − rmin
, (4)

being rj the range returned by the LiDAR for edge pLi
j .

The rationale behind this factor is that LiDARs tend to
decrease their accuracy at longer distances and, thus, we give
more importance to correspondences established at closer
distances. We then compute the optimal transformation TW

Li

as the minimizer of the loss function J(T̃ W
Li
,Υ):

J(T̃ W
Li
,Υ) =

1

2

∑
j∈Υ

ρ
(∥∥∥%e (T̃W

Li
pLi
j , l

(
T̃W
Li
pLi
j

))∥∥∥2 )
TW
Li

= min
T̃ W
Li

J(T̃ W
Li
,Υ) (5)

where Υ is the set of correspondences established between
EW

i and the local map mi−1, and ρ is a Huber loss
function to reduce the influence of outliers. The system of
non-linear equations is solved by means of the Levenberg-
Marquardt algorithm using the Ceres Solver library [16],
using transformation T̂ W

Li
as initial guess:

T̂W
Li

= TW
Li−1

T̂
Li−1

Li

= TW
Li−1

T
Li−2

Li−1
= TW

Li−1

(
TW
Li−2

)−1

TW
Li−1

, (6)

i.e. we assume the same motion as for the previously
estimated pose. Although LiODOM deals only with LiDAR
data, it is clear that any additional motion estimate, e.g. from
an IMU, can be incorporated at this point.

The full LiDAR odometry procedure is stated algorithmi-
cally in Alg. 1. In our experiments, 1 or 2 refining iterations
are enough, i.e. n = 2 or 3 at line 3 of Alg. 1.

V. LIDAR MAPPING

The registration of the extracted edges EL
i on the global

map Mi is performed by the mapping module using the
last optimized pose TW

Li
. This module also generates the

corresponding local map mi as described next.



Algorithm 2 LiDAR Mapping
Input: EL

i , TW
Li

Output: Mi, mi

1: for pLi
j ∈ EL

i do
2: pWj ← TW

Li
pLi
j [Eq. (1)]

3: Cq ← cell where pWj should be [Eq. (8)]
4: if H(Cq) 6∈ H then
5: Create new cell Cn using Cq coordinates
6: Add pWj to Cn

7: Update Mi adding Cn to C
8: Update Mi adding H(Cq) to H
9: else

10: Retrieve cell Cq using H(Cq)
11: Update Mi adding pWj to Cq

12: if Cq has more points than τ then
13: Update Mi filtering Cq using a 3D voxel grid
14: CLi

← cell where the LiDAR should be [Eq. (8)]
15: mi ← ∅
16: for Ci ∈ Neighbours of CLi

in Mi do
17: mi ← mi ∪ Ci

A. Map Representation

Given the high frequency at which the map must be
accessed, the type of data structure chosen to represent 3D
space becomes crucial for fast operation. A single KD-tree
has been typically used to this end [4]. However, this option
presents several drawbacks, such as, on the one hand, the full
tree tends to change as points are added or deleted to/from
the tree, and, on the other hand, the KD-tree performance de-
creases as more points need to be managed [4]. To overcome
these issues, in LiODOM we introduce an efficient hashing
data structure for representing the map taking inspiration
from other recent works [14], [15]. To be more specific, the
3D space is partitioned into a set of disjoint cuboids of a
fixed size that we name cells. A cell Cj is represented by its
geometric center, denoted by (cjx, cjy, cjz), and includes all
3D points whose coordinates fall into its limits. We define a
map at time i as Mi = {Hi,Ci}, where Hi is a hash table
and Ci is the set of existing cells up to time i. The table
Hi allows us to rapidly access to a specific cell Cj using a
hashing function of its coordinates, defined by:

H(Cj) = (cjx ⊕ (cjy << 1))⊕ (cjz << 2) , (7)

where ⊕ and << are, respectively, the bitwise XOR and the
left shift operators. This function has been selected in order
to minimize, as much as possible, hash collisions.

B. Map Updates

In LiODOM, map updates are performed once per sweep,
being the set of edges EL

i , extracted from Si, and the
last optimized transformation TW

Li
the input data. Unlike

other approaches [4], where the raw point cloud is used for
mapping, in our approach, the map is built using directly the
edges to speed up the mapping procedure, resulting into more
sparse maps. Initially, every point pLi

j ∈ EL
i is transformed

to world coordinates using TW
Li

and (1). Next, for each point
pWj = (x, y, z), we compute the geometric center of the cell
Cq in which the point should be stored as:

cqx

cqy

cqz

 =


bx/sxyc sxy + 1

2 sxy

by/sxyc sxy + 1
2 sxy

bz/szc sz + 1
2 sz

 , (8)

where sxy and sz are the metric cell sizes for the corre-
sponding dimension. We next check if the cell Cq is already
in the map by querying the hash table H using the key
H(Cq). If this is the case, the point is added to the existing
cell. Otherwise, a new cell Cn is created with point pWj as
seed, to be added next to C and indexed on H by H(Cn).
Finally, modified cells exceeding a certain number of points
are filtered using a 3D voxel grid. Note that our data structure
allows us to rapidly update just the required areas of the
environment, avoiding the update of the whole map on each
iteration. This fact contributes to speed up the mapping
procedure, as will be shown in the experiments.

C. Adaptive Local Map Computation

Lastly, the mapping module generates a local map mi,
which contains the points of Mi within a certain range
from the current LiDAR pose. Assuming a moderate motion
between two consecutive sweeps, these points are enough to
find correspondences for the next pose estimation step. To
build the local map, we first retrieve the cell CLi

where the
LiDAR is located at that moment using its current position
TW
Li

and (8). Next, assuming a 3D grid arranged over Mi,
neighbouring cells of CLi

up to a certain distance are further
retrieved from Mi, and their corresponding points are merged
to form the local map mi. This operation results to be very
fast due to the proposed hashing structure.

On the other side, we refer to this local map as adaptive
since it always covers a specific area of the environment,
contrary to a local map built by aggregation of a sliding
window [5], [6]. Besides, it provides us with correspondences
with revisited areas of the environment in a natural way.
Additionally, the availability of mi avoids us to search for
correspondences against the whole map, as done by other
solutions [4]. Finally, to avoid reduced amounts of points
from unexplored areas, we always add the last three sweeps
to mi. The complete mapping procedure is outlined in Alg. 2.

VI. EXPERIMENTAL RESULTS

In this section, we report on the results of several experi-
ments conducted to evaluate LiODOM, including a compari-
son with other solutions. A laptop featuring an Intel Core i7-
10750H @2.6Ghz, 16 GB RAM has been used in all cases.

A. Methodology

We validate our approach using the KITTI odometry
benchmark [17]. This dataset consists of 22 sequences
collected using a Velodyne HDL-64E sensor. Eleven of
these sequences include GPS poses that can be used as



ground truth. The average translational (%) and rotational
(deg/100m) errors are adopted in the following as main
performance metrics. We additionally consider the Absolute
Trajectory Error (ATE), although it rather focuses on the
global consistency of the whole trajectory and thus it is more
appropriate for SLAM systems.

To further validate LiODOM, we compare it with other
pure LiDAR-based odometry and also with SLAM solu-
tions, namely F-LOAM [10], ISC-LOAM [18] and LeGO-
LOAM [8]. We are aware of the existence of recent fusion-
based [5], [6] or even semantic-aided [19] solutions. They
are not considered in this evaluation since, in contrast to
our method, they imply additional complexities, such as
synchronization and calibration procedures or increasing
computational resources.

B. Odometry Performance

Table I summarizes the results obtained in terms of
translational and rotational errors. Results for F-LOAM were
obtained by ourselves using its open source implementation,
while results for ISC-LOAM and LeGo-LOAM are directly
reported from, respectively, [19] and [20]. As can be obseved,
LiODOM achieves competitive results in all sequences in
terms of translation error. This can be observed even in
sequences comprising loop closures, such as K05, K06 and
K07, where our approach achieves the second best results,
sometimes very close to complete SLAM solutions like ISC-
LOAM. We obtain, on average, 1.038% drift in translation,
outperforming the other solutions in this matter. Regarding
rotation error, again our solution leads to the lowest errors
in most of the sequences. On average, the rotational error of
LiODOM is 0.296% deg / 100m, which represents again the
lowest average error.

Table II reports on the ATE for the KITTI sequences
that contain loop closures. Again, results for F-LOAM were
obtained by ourselves, while results for ISC-LOAM and
LeGo-LOAM are reported from, respectively, [19] and [21].
LiODOM again achieves competitive results in all sequences
despite it is actually a pure odometry system and, therefore,
does not take any advantage from global map optimization
nor from loop closures. On average, the ATE for LiODOM
results to be 3.535 m, which represents the second best
performance among the different methods considered. By
way of illustration, Fig. 3 shows the resulting trajectory
estimates from our approach and from F-LOAM for several
KITTI sequences.

To finish, we choose the largest dataset considered in
this work (K02) to analyze the computational complexity of
LiODOM. Average response times for every odometry stage
can be found in Fig. 4. These are the stages that should
operate online. The capabilities of the mapping module,
which is executed as a standalone procedure, are evaluated
in the next section. As can be noticed, feature extraction
and pose estimation takes respectively 10.36 ms and 75.15
ms on average, resulting into an overall response time of
85.51 ms per frame. The latter also includes the search for
correspondences within the local map. This response time

means a frame rate of around 11 Hz, which represents a good
trade-off between computational requirements and precision,
in contrast to other solutions [10].

C. Mapping Performance

In this section, we report on an experiment intended to
assess the efficiency of the mapping approach adopted in
LiODOM. In this experiment, we measure the times required
to update the global map and to build the local maps using
our hashing-based data structure and a KD-tree. The K05
sequence was chosen in this case for computational reasons.
The results are shown in Fig. 5. As can be observed, the time
required to update the global map by our approach remains
roughly constant along the whole sequence. Contrarily, the
running times for the KD-tree approach grow as more frames
are processed, which can lead to an impractical operation.
This behaviour can be attributed to the fact that, unlike our
approach, the whole tree needs to be rebuilt on each update.
The differences are less evident as for the times required to
build the local maps, where both approaches are very fast,
although our approach seems to perform slightly better.

D. Experiments on-board an Aerial Platform

Finally, we also report on some experiments conducted
on-board an aerial platform intended for visual inspection
tasks [22]. This platform has been recently fitted with
an Ouster OS1-64 3D laser scanner that feeds LiODOM.
The experiments have been carried out inside the Aerial
Robotics laboratory of the University of the Balearic Islands,
which is equipped with an OptiTrack Motion Capture system
(MOCAP) that supplied ground truth data during the tests.
Table III shows the ATE for five different experiments. As
can be noticed, the ATE values range from 17 to 30 cm,
indicating that position estimates closely resemble the ground
truth. On the other side, by way of example, Fig. 6 compares
graphically the position estimates from LiODOM with the
ground truth during one of these experiments; a perspective
view is shown in Fig. 7. In this case, X and Y estimates
mostly coincide with the ground truth, while, as also happens
for other LiDAR-based odometry frameworks [8], [10], [18],
some drift can be appreciated at the end regarding the Z-axis
estimates.

Within this robotic system, developed under the Super-
vised Autonomy paradigm, LiODOM is expected to supply
not only pose estimates, but also velocity estimates, which
constitute the basis for platform control in this case. Table III
reports on the velocity estimation results for the same five
experiments as above, in the form of Root Mean Square
Errors (RMSE) separately for each axis. The reported values
indicate a very high accuracy in the estimation of X and Y
velocities, and a slightly larger error for the Z axis. To finish,
Fig. 8 compares graphically the vehicle velocities estimated
by LiODOM with the values provided by the MOCAP for
one of these experiments. As also observed for the position
estimates, the X and Y velocity estimates coincide almost
perfectly with the ground truth, while the Z-axis estimates
are less accurate at certain moments.



TABLE I
AVERAGE TRANSLATIONAL AND ROTATIONAL ERRORS FOR THE KITTI ODOMETRY BENCHMARK.

BEST RESULTS ARE SHOWN IN BOLD RED AND SECOND BEST IN BLUE.

Translational Error (%) Rotational Error (deg/100m)

F-LOAM ISC-LOAM LeGO Ours F-LOAM ISC-LOAM LeGO Ours

K00 0.861 1.020 2.170 0.857 0.349 0.420 1.050 0.348
K01 1.309 2.920 13.400 1.301 0.128 0.630 1.020 0.129
K02 0.952 1.670 2.170 0.947 0.310 0.540 1.010 0.309
K03 1.267 1.150 2.340 1.262 0.227 0.720 1.180 0.226
K04 1.417 1.500 1.270 1.411 0.010 0.560 1.010 0.009
K05 0.835 0.810 1.280 0.834 0.360 0.370 0.740 0.359
K06 0.835 0.760 1.060 0.834 0.332 0.410 0.630 0.331
K07 0.883 0.560 1.120 0.881 0.617 0.430 0.810 0.614
K08 0.869 1.200 1.990 0.864 0.332 0.500 0.940 0.331
K09 1.033 1.400 1.970 1.029 0.317 0.590 0.980 0.318
K10 1.203 1.870 2.210 1.196 0.287 0.620 0.920 0.288

Average 1.042 1.351 2.816 1.038 0.297 0.526 0.935 0.296

K00 K05

K08 K09
Fig. 3. Examples of trajectories estimated for some sequences of the KITTI odometry benchmark. The ground truth is shown as a red dashed line, while
F-LOAM and LiODOM estimates are respectively shown as blue and green lines.

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes LiODOM, a novel LiDAR-only
odometry and mapping approach. Our solution fundamen-
tally consists of two parts working concurrently: (1) the

odometry module, which is in charge of extracting a set of
edges from the input sweep and estimating the current pose
of the LiDAR; and (2) the mapping module, which builds
and maintains a global map of the environment, and also
generates a local map employed for pose estimation. Pose



TABLE II
ABSOLUTE TRAJECTORY ERROR (M) FOR THE KITTI DATASET. BEST

RESULTS ARE SHOWN IN BOLD RED AND SECOND BEST IN BLUE.

F-LOAM ISC-
LOAM LeGO Ours

K00 5.137 1.600 6.300 7.135
K02 9.294 4.770 14.700 9.754
K05 2.546 2.490 2.800 0.322
K06 0.934 1.030 0.800 0.956
K07 0.498 0.560 0.700 1.518
K08 4.344 4.880 3.500 4.592
K09 2.144 2.310 2.100 0.470

Average 3.557 2.520 4.414 3.535

Fig. 4. Average response time for each odometry estimation stage.

estimation is conceived as an optimization problem which
involves a set of weighted point-to-line constraints between
the current sweep and a local map. We have also described
a data structure based on a hashing scheme which allows us
to rapidly get access to any part of the map and manage it in
an efficient way. Furthermore, this structure is also employed
to obtain an adaptive local map, used to facilitate data
association. Our experiments show that LiODOM compares
favourably against other state-of-the-art approaches, and that
it can be used for both position and velocity estimation.

Despite its good performance, LiODOM is an odometer
and unavoidably drifts. Therefore, we will consider extending
the ideas proposed in this paper to develop a complete

TABLE III
ATE AND VELOCITY RMSE FOR THE EXPERIMENTS ON-BOARD A UAV

Experiment ATE Velocity RMSE (x / y / z)

1 0.177 0.039 / 0.038 / 0.092
2 0.306 0.046 / 0.040 / 0.105
3 0.173 0.034 / 0.041 / 0.066
4 0.244 0.063 / 0.048 / 0.080
5 0.272 0.040 / 0.048 / 0.062

** Values in m and m/s.

Fig. 5. Performance of the LiODOM mapping structure vs. a KD-tree.

Fig. 6. Position estimates for one of the experiments running LiODOM
on-board an aerial platform. LiODOM estimates are shown in green, while
the ground truth is shown as a red dashed plot.

SLAM / 3D reconstruction system, incorporating other mo-
tion estimation sensors into a fusion scheme for enhanced
performance.
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Abstract—We present a novel FastSLAM approach for a robotic
system inspecting structures made of large metal plates. By taking
advantage of the reflections of ultrasonic guided waves on the plate
boundaries, it is possible to recover, with enough precision, both
the plate shape and the robot trajectory. Contrary to our previous
work, this approach takes into account the dispersive nature of
guided waves in metal plates. This is leveraged to construct beam-
forming maps from which we solve the mapping problem through
plate edges estimation for every particle, in a FastSLAM fashion.
It will be demonstrated, with real acoustic measurements obtained
on different metal plates, that such a framework achieves more
accurate results, while the complexity of the algorithm is sensibly
reduced.

Index Terms—Industrial robots, range sensing, SLAM.

I. INTRODUCTION

IN THIS work1, we describe a new FastSLAM approach [1]
to achieve Simultaneous Localization and Mapping (SLAM)

for a robotic system relying on Ultrasonic Guided Waves
(UGWs) to support inspection tasks on large metal structures
such as storage tanks or ship hulls. In Structural Health Mon-
itoring (SHM), acoustic tomography techniques can be used
for defect detection and characterization, but they rely on the
accurate prior knowledge of the positions of the sensors which
are integrated into the structure [2], [3]. To deploy similar
methods on a robotic platform, recovering the robot position
with respect to the individual metal plates may be beneficial, as
it could lead, in combination with external localization systems,
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Fig. 1. (Left) A magnetic crawler carrying out an inspection task on a metal
structure. (Right) Guided waves reflected by the edges of a plate in a simulation
environment. We aim to enable on-plate localization and mapping with a high
precision for magnetic crawlers equipped with acoustic transducers, and relying
on such ultrasonic reflections.

to precise localization of the mobile unit, and thus, to accurate
inspection results.

On metal plates, guided waves are often generated by applying
piezo-electric transducers in contact with the surface. These
waves propagate radially around the emitter through the plate
material, and potentially over large distances. When encounter-
ing the plate edges, these waves are reflected perpendicularly,
and a receiver can sense the reflections. In this setup, the resulting
acoustic data carry essential information on the source position
and the plate geometry.

In this work, we consider a mobile unit equipped with acoustic
transducers for both emission and reception, and moving on a
metal surface. We leverage the sensing of the ultrasonic reflec-
tions to estimate both the plate shape and the robot trajectory. The
principle of this approach is illustrated in Fig. 1. In the robotic
field, this problem is known as Simultaneous Localization and
Mapping (SLAM).

One of the significant challenges arises from the dispersive
nature of UGWs [4]. It means that the propagation velocity
is a function of the wave frequency, resulting in a waveform
deformation when the propagation distance increases. Besides,
propagation in metal plates is highly reverberant. These char-
acteristics account for the relative complexity of acoustic data
and call for specific processing methods to achieve on-plate
localization and mapping with high accuracy. On the robotic
aspect, recent works consider the similar problem of room
shape reconstruction from acoustic echoes [5], [6]. As the sound
velocity in the air is constant, the determination, from the mea-
surements, of the first-order reflections is not a significant issue.
However, identifying several echoes from guided wave data is
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Fig. 2. Illustration of wave dispersion in plates with simulated data. The
excitation signal is in blue, the signal propagated after 0.5 meters in orange,
and the signal propagated after 2 meters in red.

more difficult due to the wave dispersion and the wave packets
overlapping.

In our previous work [7], ultrasonic measurements on metal
plates have proven to yield sufficient information to provide both
localization and mapping capabilities on metal plates. However,
the dispersive nature of the waves was not taken into account
and the relative complexity of the algorithm may jeopardize
its robustness and accuracy. In this paper, we present an al-
ternative method to solve the SLAM problem from ultrasonic
measurements. First, a wave propagation model is introduced
and is leveraged to detect acoustic reflections. From them, we
build beamforming maps [8] which are subsequently integrated
into a FastSLAM framework to solve the mapping problem.
Our approach achieves more accurate results than our previous
method on real data, with less algorithmic complexity.

In summary, our contributions are the introduction of prop-
agation models and the integration of beamforming maps in
FastSLAM to achieve on-plate Simultaneous Localization and
Mapping with high accuracy for robotic inspection.

II. RELATED WORK

On the one hand, standard methods to inspect large metal
structures consist in deploying a mobile robot to perform point-
by-point thickness measurements with an acoustic probe, but
the entire surface cannot be inspected in a reasonable amount of
time due to the limited surface of the transducer. On the other
hand, UGWs have been successfully used by SHM systems
to inspect large structures such as pipelines or rails [4], [9],
but the transducers are integrated into the structure and their
position is known accurately. Hence, outside of the authors’
works, UGWs-based techniques have not been deployed on a
robotic system, nor have guided waves proven to yield accurate
localization capabilities which are critical for such methods to
work.

Moreover, UGWs propagation is dispersive, which means that
the longer the distance a wave packet travels in a metal plate, the
more it deforms. Fig. 2 illustrates this phenomenon. It shows that
the shape of the signal is significantly different after propagating
over two meters. In SHM, the chosen frequency range generally
lies in a dispersion-limited bandwidth, but for our case-study,
waves might propagate over much larger distances. Hence, wave
dispersion may still have some effects on the signals, and shall
not be neglected. In the literature, the use of propagation models
in the context of localization and mapping on metal structures
has not been thoroughly investigated. This work aims to answer
this need.

In typical guided wave data, there are numerous echoes due
to the multiple reflections on the plate edges and their number

increases exponentially with the observation time. In addition,
the wave packets overlap because of the wave dispersion. The
consequence is that it is very challenging to recover individ-
ual wave-packets from the mixture data [10]. Therefore, most
of the recent SHM techniques still rely only on the incident
wave packet [3], [4], [11], [12]. For on-plate localization and
mapping purposes, however, the retrieval of multiple echoes
is essential, as they all provide range-only information to the
edges. In the echo detection literature, time-delay estimation
techniques have been successfully applied to ultrasound waves
in the air [13], [14] but in a non-dispersive context. In [7], we
used L1-regularized least squares to retrieve the multiple echoes
without taking into account wave dispersion. Here, we rely on a
wave propagation model to determine, through correlation with
acoustic data, the likelihood of a reflection over a full range of
distances to the transducers. In this new setup, the resolution of
the difficult echo association problem is no longer required.

Recently, there have been attempts to infer a plate geometry
from guided waves data [15]. Yet, non-dispersive propagation
models are used, and the sensors are integrated into the structure.
In robotics, the most similar problem is room shape reconstruc-
tion from acoustic echoes [5], [6]. However, they rely on sound
waves propagating in the air without dispersion and do not con-
sider the association problem to determinate the wall from which
each echo originates. In [7], we rely on the most likely echo-line
association but the overall algorithm is rather complicated due
to the map management, and its robustness is limited. Here,
from the likelihoods of reflection, we build beamforming maps
to estimate the plate shape and limit ourselves to rectangular
geometries (which are to be expected in our application). Then,
these elements are integrated into a FastSLAM algorithm to
achieve localization and mapping simultaneously.

In summary, we present a new method that efficiently inte-
grates wave propagation models from the guided waves theory
and beamforming maps in a FastSLAM algorithm to achieve
more accurate on-plate localization and mapping results with
less algorithmic complexity comparing to our previous method.
The results obtained with experimental acoustic data from dif-
ferent metal plates support our claim.

III. METHOD

In this work, we are considering a mobile unit equipped with a
co-localized emitter/receiver pair of transducers and moving on
a metal surface. At the ith scanning position, the emitter sends
a pulse s(t) to excite guided waves in the plate material, and
the receiver collects the acoustic response zi(t) which contains
the ultrasonic echoes. We intend to use these data and the robot
odometry to recover accurately both the plate shape and the robot
trajectory.

A. Measurement Model

Acoustic measurements essentially consist in a succession of
the reflections of the excitation wave on the plate boundaries. As
the small-sized corrosion patches we aim to detect with robotic
inspection may not act as reflectors, their potential effect is
neglected for the SLAM problem. Under the assumption that the
material is isotropic, the propagation linear, and the reflections
on the edges are orthogonal, a standard measurement model
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to reverberation is the image source model [16]. It relies on
the fact that each reflection from the plate boundaries can be
considered as a signal originating from a fictional source, which
is deduced from the real source position and the reverberant
media geometry. In metal plates, the image source model can
be leveraged to account for first order as well as higher order
reflections, resulting in the following measurements:

zi(t) =
∑

x∈I(xi)

g(x,xi, t) ∗ s(t)

wherexi = [xi, yi] is the position of the robot during time step i,
I(xi) the set of the image sources positions when the real source
is in xi, g(x,xi, t) the acoustic response of the plate to an im-
pulse being generated in x and received in xi, and ∗ denotes the
convolution operation. In a non-dispersive media, the impulse
response is simply given by g(x,xi, t) = δ(t− ||x−xi||

c ), where
δ denotes the Dirac distribution, and c is the constant propagation
velocity. It results in waves propagating at a constant speed and
without distortion. In a dispersive media like metal plates, a
well-suited model of the propagation is given by the solutions
of the Helmholtz equation [17]. For an ideal isotropic media, the
impulse response is only a function of the propagation distance
r between the (fictional) source and the receiver. Moreover, it is
usually reduced, in the Fourier domain, to:

ĝ(r, ω) ≈ e−jk(ω)r/
√

k(ω)r. (1)

where k(ω) is the wavenumber of the major acoustic mode, and
its non-linear dependency with respect to the pulsation ω is the
typical characteristic of dispersive propagation. More details on
how to determine this relation given prior information on the
plate material can be found in the literature [4].

B. Correlation-Based Echo Detection

With the aim to retrieve the distances of the robot to the
edges from data zi(t), we use the designed propagation model to
estimate the likelihood that an orthogonal reflection occurred at a
distance r. First, we consider the signal that would only contain
such a reflection: ẑ(r, t) = ĝ(2r, t) ∗ s(t). Next, we build the
correlation signal to assess the likelihood that this pattern is
present within the measurement:

z′i(r) =
〈zi(t), ẑ(r, t)〉√〈zi(t), zi(t)〉〈ẑ(r, t), ẑ(r, t)〉

(2)

where 〈., .〉 denotes the scalar product in the domain of contin-
uous signals: 〈u(t), v(t)〉 = ∫ +∞

−∞ u(τ)v(τ)dτ. As the resulting
signal z′i presents oscillations consistent with the wave spatial
periodicity, it is more convenient to only work with its envelope
that we will call zi(r) for simplicity (which shall not be mistaken
with the temporal signal zi(t)):

zi(r) = |z′i(r) + jH(z′i)(r)| (3)

where H denotes the Hilbert transform operator. Hence, the
resulting signal zi takes its values only between 0 and 1, and
a higher value at r translates into a high likelihood that a
reflection occurred at such a distance. In summary, by looking
at the local maxima of zi(r), one can deduce the most likely
reflections. Besides, it is noteworthy that a single measurement
cannot provide enough information to determine an edge without

ambiguity, as all the lines tangent to the circle with radius r and
centered at the sensors position may equally account for the
correlation measurement.

C. Map Estimation Via Beamforming

Similarly to our previous work, the map is represented by a
set of lines: M = {rl, θl}l=1...4 where the parameters (rl, θl)
define the line equation in the 2D plane with:

x · cos θl + y · sin θl − rl = 0

in a non-mobile frame with respect to the plate. Moreover, as
we limit our case-study to rectangular shapes, the possible maps
possess only four lines forming a rectangle altogether.

Let’s assume a hypothetical robot trajectory {xi, yi}i=1...T .
We aim at estimating the map M, which means establishing
the probability density function p(M|x1..T , y1..T , z1...T ). A
first solution would consist in assessing, for each map in the
8-D domain, the correlation between the observations and the
predicted data based on the image source model. However,
such an approach would be far too cumbersome for a real-time
application. Instead, we rely on a beamforming map. Such a map
attributes, to every line parameters (r, θ), the likelihood of the
line existence given the observations with:

LT (r, θ) =

T∑
i=1

zi(|xi · cos θ + yi · sin θ − r|).

where di(r, θ) = |xi · cos θ + yi · sin θ − r| is the distance be-
tween the robot during time-step i and the hypothetical line being
considered. In the equation, all the correlation values add up
constructively along all the observations if an edge is indeed
present. Also, it can be noted that only first-order reflections are
taken into account, as we reason on individual lines. One may
consider that higher order reflections are less likely to account
for high correlation amplitudes because of wave scattering after
each additional reflection which causes loss of energy to the
wave packet. Finally, to retrieve the most plausible map, we
solve the following optimization problem:

M̂ = argmax
M

LT (M) = argmax
M

4∑
l=1

LT (rl, θl)

where M is restricted to be a rectangle. It can be solved
efficiently by taking that constraint into account. First, one can
determine the most likely line:

(r1, θ1) = argmax
r,θ

LT (r, θ).

Next, it is possible to rely on the assumption that the retrieved
line provides the most reliable estimation of the plate orientation
w.r.t. the robot. Therefore, the determination of the other lines
for l = 2, 3, 4 reduces to solving simple and independent one-
dimensional optimization problems:

θl = θ1 +
π(l − 1)

2
; rl = argmax

r
LT (r, θl).

D. Particle Evaluation and FastSLAM Algorithm

FastSLAM is a common approach to approximate Bayesian
filters in the context of a SLAM problem. It relies on a particle
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filter in the localization space, where each particle holds a hy-
pothesis on the map which is inferred from the particle trajectory
and the measurements. During time stepT , a set withN particles
has the following form:

PT =
{
X

(n)
T = {x(n)

i , y
(n)
i , α

(n)
i }i=1...T ,L(n)

T

}
n=1...N

where X
(n)
T represents the n-th particle belief on the robot

trajectory augmented with its heading over time steps i = 1. . .T ,
and L(n)

T its beamforming map which depends on the trajectory.
Moreover, each particle is provided with a weight indicating how
the particle belief accounts for the measurements. To define it,
we rely on the current correlation measurement and assess the
likelihoods of the map edges retrieved from L(n)

T and the current
robot position belief:

w
(n)
T = η · exp

⎧⎪⎨
⎪⎩
β

∑

(rl,θl)∈M(n)
T

zT

(
d
(n)
T (rl, θl)

)
⎫⎪⎬
⎪⎭

(4)

where η is the normalization factor andβ a positive parameter.
It enables to fix the confidence in the correlation measurements
and shall be tuned so that the resulting weight distribution is con-
sistent with the motion and observation noises. The weights are
used to sample, with replacement, the particles after each time
step. Besides, one may note that we are not considering, in (4),
the uncertainty on the lines retrieval from the beamforming maps
for simplicity. Altogether, the implementation of FastSLAM is
given in Algorithm 1.

IV. RESULTS

In this part, we test our FastSLAM approach on experimental
data. We detail the experimental setup and show the results in
terms of localization and mapping accuracy.

Fig. 3. Illustration of the echo detection principle based on correlation with
a propagation model. a) represents the acoustic measurement. b) shows the
correlation signal (blue) and its envelope (orange).

A. Experimental Setup

In order to assess the efficiency of our procedure, we use
an emitter-receiver pair of transducers on two different metal
plates. The first plate has dimensions 600 × 450 × 6mm, is
in aluminium, and has small artificial holes on it. The second
plate has dimensions 1700 × 1000 × 6 mm and is in steel.
The acoustic data for the plate 1 have been already presented
in [7] and will serve as a way to demonstrate the improvement
of the procedure. The acquisition process is globally the same to
collect the data on the second plate: the transducer pair is moved
by hand on the vertices of a regular grid. At every position,
10 measurements of the ultrasonic response are averaged to
improve the signal quality. This operation is not critical in a
laboratory environment, but it may be necessary in outdoor
conditions, where the inspection robot shall operate, to alleviate
the effect of external disturbances. The acquisition positions are
also carefully recorded. In total, 108 measurements are collected
on the plate 1, while this number increases to 117 for plate 2.
We use two tonebursts of a sinusoidal wave at 100 kHz as
the excitation. Moreover, the direct incident signal is smoothly
removed from the data as it does not correspond to a reflection
on an edge.

For each plate, we determine a wave propagation model
as in eq. (1) and use N = 20 particles. To simulate a sweep
of a plate by a robotic crawler, a sequence of measure-
ments is selected from the database and is presented to the
SLAM framework, with the theoretic displacement between
grid cells used as odometry. Also, we add Gaussian noise on
the odometry data: Δ̄r ∼ N (Δr, (10−2Δr +Δr0)

2) and Δ̄θ ∼
N (Δθ, (10−2Δθ +Δθ0)

2) with Δr0 = 10−3 m and Δθ0 =
10−2 rad to simulate odometry uncertainty which may be limited
due to the robot magnetic adherence and embedded accelerom-
eters used to provide precise heading on a nearly-vertical struc-
ture, in a realistic scenario [7].

B. Echo Detection

First, we illustrate the echo-detection principle. We show, in
Fig. 3.a), the measured acoustic signal for a position correspond-
ing to 8 cm to the edges, in a corner of plate 1. On b), we show
the resulting correlation signal computed using eq. (2) and its
envelope calculated with eq. (3), yielding the signal which is
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Fig. 4. Trajectories estimated by all the particles (black lines), dead-reckoning
trajectories (dash magenta lines) and map retrieved by the most likely particle
(green lines) during Steps 1, 22, 50 and 108 for a lawn-mower path on plate 1
(zoom for details). The true outline of the plate and true sensor positions
correspond to the blue rectangle and blue dot respectively.

fed to the FastSLAM algorithm. It can be seen on b) that we
manage to retrieve, from the local maxima, all the distances
where first-order reflections occurred which are 8, 37 and 52 cm.
The echo detected at nearly 45 cm corresponds to a higher-order
reflection, but still has an amplitude that is comparable to that of
the first-order wave packets. The existence of such a reflection
is not assumed by the algorithm. Hence, we will determine a
posteriori if their presence has a detrimental effect on the results.

C. Localization and Mapping Results

We run our FastSLAM algorithm using the data of plate 1, and
simulate a lawn-mower path. Although the results are generated
off-line, our method can run online on a real robotic platform.
Indeed, as the beamforming maps of size Z × Z are updated
incrementally, the complexity of one FastSLAM iteration with
N particles is O(N × Z2), which leads to a computational time
of a few tens of milliseconds per iteration in our setup, with
Z = 300 and N = 20.

In Fig. 4, we show the particles’ belief on the sensors trajectory
during measurement steps 1, 22, 50 and 108. We also represent
the map retrieved by the particle with the highest weight and sev-
eral dead-reckoning trajectories obtained using noisy odometry
input only. During Step 1, the map is not correctly estimated. As
only one measurement has been integrated, the distance to the
closest edge can be recovered but, the orientation is essentially
random. Rapidly, the three closer edges are recovered as shown
during Step 22. However, the right edge is not yet well estimated
as it is further away. During Step 50, the plate shape is fully
recovered, and during the final step, both the estimation of the
plate shape and trajectory are accurate. In contrast, the dead-
reckoning trajectories present noticeable drift. This illustrates
that, by relying on the acoustic data, the proposed approach can
appropriately compensate for moderate odometry noise.

Fig. 5 depicts the beamforming map for the most likely
particle during the final step. We can see that the intensity peaks
due to the edges are clearly visible, and our optimization method
does not face difficulty to retrieve them.

To compare our new FastSLAM approach with the previ-
ous one, we show, in Fig. 6, the average localization and line
parameters estimation errors calculated over 100 runs of each

Fig. 5. Beamforming map for the particle with the highest weight during the
final step. The rectangles indicate the edges retrieved with our method.

Fig. 6. Localization and mapping results over 100 repetitions of a lawn-mower
path on plate 1 for the previous and the new method. a) Average estimation errors
on the range parameter of the lines. b) Average estimation errors on the angle
parameter. c) Average localization errors in the estimated plate frame. The 10%
and 90% quantiles correspond to the upper and lower bounds of the coloured
areas. The scales along the y-axis are logarithmic.

algorithm, and using the same acoustic data on plate 1. We
simulated 100 repetitions of the lawn-mower path for the sensors
trajectory. In the figure, we represent the 10% and 90% quantiles
with the aim to measure the repeatability of each approach. It
can be observed that, with our new method, only a few tens
of measurement steps are necessary to recover, in average,
the range parameters of the lines with a precision of a few
millimeters, and the plate orientation with a precision better than
one degree. The localization result is also very precise as, after
a quick convergence, the position errors remain in the order of
a few millimeters despite the defects on the plate. Besides, the
estimation is not subject to randomness as the 10% and 90%
quantiles remain close to the average results. In comparison,
our previous method demonstrates poorer results. Indeed, not
only are the estimation errors higher, but also the variation
of precision can be relatively significant between two runs.
Altogether, the results illustrate the improvement of localization
and mapping that is achieved by our new method.

With the aim to assess the results for a larger plate, we
run our algorithm with the measurements obtained on plate 2,
and simulate again a lawn-mower path. The results obtained
over 100 runs are provided in Fig. 7. On this plate, the echo
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Fig. 7. Localization and mapping results over 100 repetitions of a lawn-mower
path on plate 2 for the new method. a) Average estimation errors on the range
parameter of the lines. b) Average estimation error on the angle parameter. c)
Average localization errors in the estimated plate frame. The 10% and 90%
quantiles correspond to the upper and lower bounds of the coloured areas. The
scales along the y-axis are logarithmic.

Fig. 8. Average estimation errors and standard deviations on the lines pa-
rameters obtained during the last measurement step for the two scenarios in
consideration. The errors are evaluated using 100 repetitions.

detection employed by our previous method is not efficient,
as it does not consider the wave dispersion effect, whereas the
propagation distances are larger. This induces large misdetection
rates and poor results. Hence, we display only the results of
our new approach. Despite the slower convergence caused by
the larger surface, and the slightly higher localization error, our
method still provides precise estimates of the trajectory and plate
geometry. This result indicates that our approach still works on
surfaces sufficiently large to be used for realistic applications.
The underlying prerequisites are a wave propagation model and
filter parameters that conveniently fit the acoustic measurements
and on-the-field noisy conditions. Naturally, one may also expect
longer convergence times when the plate surface increases, as
the echo detection is expected to be efficient mostly for short
ranges as shown in Fig. 7.a).

As a final evaluation, we determine the average mapping
errors and standard deviations over 100 runs obtained during
the final step for a lawn-mower path (Scenario 1) and a random
walk (Scenario 2) on plate 1. Fig. 8 presents the results. It can
be noticed that the overall results are relatively poorer for the
random walk. This illustrates that the estimation accuracy also
strongly depends on the robot path which shall be optimized for
optimal reconstruction.

V. CONCLUSION

We have designed a new FastSLAM approach to achieve
Simultaneous Localization and Mapping on metal plates
by relying on ultrasonic guided waves. Comparing to our
previous work, this method relies on wave propagation models

and beamforming maps. Experiments carried on an undamaged
and a damaged metal plate in a laboratory environment demon-
strate that this new approach achieves better results in terms of
accuracy and robustness with less algorithmic complexity. In
future works, this method shall be adapted and tested in more
realistic scenarios. Indeed, on a large metal structure in outdoor
environments, more complex and noisy signals are expected
due, for example, to inferior surface quality, to the presence of
anti-fouling coating on the plates, to more complex plate geome-
tries, or due to wave scattering caused by the welds which fix
the different plates altogether. Furthermore, adaptive techniques
shall be investigated to adjust the propagation model and filter
parameters which may no longer be assumed known a priori.
Also, a real robotic platform shall be used, and active-sensing
strategies shall be investigated to recover the plate geometry
efficiently.
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Mid-Air Range-Visual-Inertial
Estimator Initialization for Micro Air Vehicles

Martin Scheiber1, Jeff Delaune2, Stephan Weiss1, and Roland Brockers2

Abstract— Monocular Visual-Inertial Odometry (VIO) has
become ubiquitous for navigation of autonomous Micro Air
Vehicles (MAVs). Yet, state-of-the-art VIO is still very failure-
prone, which can have dramatic consequences. To prevent this,
VIO must be able to re-initialize in mid-air, either during a free
fall or on a constant velocity trajectory after attitude control
has been re-established. However, for both of these trajectories,
the visual scale cannot be observed with VIO batch initializers
because of the absence of acceleration change. We propose to
use a small and lightweight laser-range finder (LRF) and a
scene facet model to initialize vision-based navigation at the
right scale under any motion condition and over any scene
structure. This new range constraint is integrated into a visual-
inertial bundle-adjustment initializer. We evaluate our approach
in simulation, including robustness to various parameters, and
demonstrate on real data how this approach can address mid-
air state estimation failure in real-time.

I. INTRODUCTION

Autonomous, safe, and robust navigation is crucial for
a micro air vehicle (MAV). In-flight pose estimation must
provide accurate and robust poses for flight controllers to
perform ever more complex maneuvers. Many different ap-
proaches exist, ranging from multi-sensor to minimal-sensor
set state estimation. Although these approaches differ, their
common ground is the need for an initial state.

Especially minimum sensor suite approaches, i.e., visual-
inertial odometry (VIO) algorithms, are constrained on their
estimator initialization. Most state-of-the-art VIO rely on a
specific scenario or motion to start their estimator correctly.
However, this limits the level of MAV autonomy since the
scenario or motion might be unknown when (re-)initializing.
Particularly, fully-autonomous systems should be able to
initialize in all airborne scenarios, which are
(a) excitation motion,
(b) constant velocity motion, including hovering (no mo-

tion), and
(c) free-fall motion.

Excitation motions are perfect for initialization, and nearly
all state-of-the-art VIO algorithms rely on excitation in their
initialization technique. Similarly, filter-based algorithms can
cover hover or static initialization. These scenarios also
refer to the most common initialization motion, especially
when performing manual or velocity-control-based takeoff.
Nevertheless, constant velocity and free-fall initialization can

1These authors are with Faculty of Intelligent System Technologies,
Group Control of Networked Systems, Universität Klagenfurt, Klagenfurt,
Austria {martin.scheiber, stephan.weiss}@ieee.org

2These authors are with the Jet Propulsion Laboratory, California Insti-
tute of Technology, Pasadena, California, USA {jeff.h.delaune,
roland.brockers}@jpl.nasa.gov
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Fig. 1. Illustration of the proposed mid-air initialization algorithm for
constant velocity flights. The 3D-structured scene is captured by a downward
looking camera. With its generated images, features can be triangulated and
divided into subgroups of triangles. Then a laser-range finder (LRF) can
be used to metrically scale the Delaunay triangulated structure and camera
poses in a non-linear optimization. Further, in combination with an IMU,
the full MAV navigation states can be recovered in a linear way, providing a
full onboard initialization. Please note that the environment is not assumed
to be planar (i.e., it can be structured).

occur in mid-air deployment or mid-air recovery scenarios.
However, traditional VIO frameworks cannot handle these
initialization trajectories. Hence, additional environment in-
formation is needed to provide a full state visual-inertial
initialization for motion (b) or (c), removing the autonomy
of such approaches.

Therefore, this work aims to provide an initialization
algorithm that is
• Motion independent: Our proposed framework can

initialize in any non-zero motion, regardless of being
excitation, constant velocity (as illustrated in Fig. 1), or
free-fall motions.

• Computationally fast: Analysis of our proposed ap-
proach showed it is able to run in real-time onboard an
embedded platform to provide fast initialization under
time-limited motions (e.g., free-fall).

• Free of prior knowledge: Typically, initializers take
advantage of prior knowledge, e.g., planar ground,
height, level attitude, or similar. Our proposed approach
works without any prior information on the motion or
environment.

This work is structured as follows: Sec. II will examine
state-of-the-art initialization techniques, their limitations in
the in-flight reference scenarios, and why range measurement
can lift these limitations. Sec. III presents our initialization



algorithm, that can initialize in any mid-air scenario. Sec. IV
takes a closer look at the influence of noisy measurements on
our proposed algorithm, and Sec. V presents and discusses
results on real-world constant flight experiment, as depicted
in Fig. 2.

II. RELATED WORK
A. Visual-Inertial Odometry

State-of-the-art visual-inertial state estimation frameworks
comprise many different methods and algorithms. Neverthe-
less, such frameworks are usually grouped into two main
algorithm categories: filter and optimization-based [1].

Filter approaches typically represented with a variant
of extended Kalman filter (EKF) [2]. Filter based visual-
inertial estimators are able to quickly propagate the state
and its covariance and provide information needed for flight
control using high-frequency information from the inertial
measurement unit (IMU). With the IMU typically modeled
as input for the system dynamics and therefore generating
growing uncertainties over time, a camera sensor can provide
a pose update to correct eventual drift and to decrease the un-
certainty. Filter approaches shine by their ability to efficiently
retain past information through marginalization implicitly in
the error covariance matrix, allowing estimations without the
need for time-consuming iterative optimizations. Filter-based
frameworks can be divided into tightly and loosely coupled
estimators [3]. Loosely coupled estimators [4], [5] perform
the visual pose calculation independently from the state
update and include a metric scale in their state definition.
In comparison, tightly coupled systems use the include the
tracked features directly in their dynamics to update and
correct the state [6], [7], [8], [9], [10].

Non-linear optimization-based algorithms iteratively per-
form a least-square approach to converge to a state es-
timate [3]. The most commonly used optimization is the
bundle-adjustment (BA) that minimizes the re-projection
error of tracked features. The BA can be used for vison-only
systems such as ORB-SLAM [11], SVO [12], or fused with
inertial measurements as the Robust and Versatile Monoc-
ular Visual-Inertial State Estimator (VINS-Mono) [13] or
Open Keyframe-based Visual-Inertial SLAM (OKVIS) [14]
showed. Their advantage is that they can approach with
sufficient iterations they can achieve better estimation qual-
ity. However, they require translation to triangulate a map.
Further, they are computationally more costly since they
optimize over past measurements. This problem has been
mitigated in recent years as onboard processing power has
increased, and through marginalization of past information.

As both nonlinear filtering and optimization approaches
find the local optima, they are dependent on an accurate
initialization of the state vector in the vicinity of the global
optima.

B. Initialization
Robustness and performance of both filter- and

optimization-based algorithms depend on the quality
of the initialization routine. The former require an initial
pose and velocity state estimates, which can be zero motion
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Fig. 2. Real-world experiment for initializing the proposed framework
under a constant velocity flight. The initialization is triggered at (pink point),
and the next 10 image frames (i.e., 0.33 s) are taken for the initialization
window (orange estimates). After computing the initial navigation states
(after approx. 0.75 s), the estimator VINS-Mono is initialized (red point)
and continues with a visual-inertial navigation (blue estimates). The norm of
the velocity throughout the initialization phase, computed with the position
derivatives from the motion capturing system, are shown in the lower plot.

(assuming MAV starting on the ground before take-off).
This estimate has to be relatively close to the actual value
in order for the filter to converge. On the other hand,
optimization-based approaches need an initial map and
visual scale.

As an example of mid-air self-initialization without partic-
ular excitation motions, several studies have been presented
that address the throw-and-go (TnG) problem under specific
assumptions: [15] used height assumption to provide an
initial estimate to their filter-based estimator, whereas [16]
required an attitude estimation before the fall, flat ground
surface, and horizontal translation to triangulate the initial
structure and derive the metric scale for their optimization-
based estimator. Further, in our previous work [17], we
managed to initialize in a free-fall by aligning the magnitude
of visual acceleration to the magnitude of gravity.

These free-fall initialization approaches are limited to that
exact scenario and prior knowledge or assumptions and
cannot be applied to horizontal motion at constant veloci-
ties. Nevertheless, IMU-pre-integration [18] can provide an
opportunity to unify the mid-air self-initialization approaches
in one framework and remove pre-initialization assumptions.
E.g., methods with visual-inertial optimization in initializa-
tion, such as VINS-Mono, OKVIS, or OrbSLAM3 [19], rely
on the IMU pre-integration to generalize their initialization
algorithm to all visual-inertial observable motions.

We selected VINS-Mono as state-of-the-art algorithm to
compare our approach against because of both maturity
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Fig. 3. The proposed Range-Visual-Inertial initialization framework. Images are used to derive the initial camera poses using the Fundamental or
Homography matrix method (Sec. III-A). First the scene structure from motion (SfM) is derived using a perspective-n-point (PnP) approach (Sec. III-B).
Second, this structure is scaled metrically with the range measurements received by the LRF (Sec. III-C). Then, to reduce the impact of measurement noise
a range-visual bundle-adjustment (R-BA) is performed (Sec. III-D). Finally, the range-visual poses are aligned with the pre-integrated IMU measurements,
to derive the globally aligned states (Sec. III-E).

and repeated good initialization performance in different
scenarios. Taking a closer look on VINS-Mono’s four step
initialization algorithm [20], this approach first estimates
the initial pose and structure using camera trigonometry,
given a initialization window of N keyframes. Then a
perspective-n-point (PnP) is performed to derive all other
keyframe camera poses in the window and triangulate all
remaining matches to form a complete structure. This struc-
ture and camera poses are then used in a visual BA to
minimize measurement noise and triangulation errors, and
improve the estimated poses. Given the first keyframe set
as visual camera coordinate frame C, and given the body
(or IMU) coordinate frames k = Bk for each image at
time tk, all initialization window position and rotations,
Cpk and CRk, are derived in the BA. At the last step,
VINS-Mono performs a linear least-square (LLS) to linearly
align these visual with the inertial IMU measurements.
The latter are pre-integrated to derive the frame-to-frame
position and velocity, kα̂k+1 and kβ̂k+1, respectively. Equ. (1)
describes the LLS that solves for the remaining state vec-
tor kx̂k+N =

[
kv̂T

k+1, . . . , k+N−1v̂T
k+N ,

CĝT, λ
]T con-

taining the camera velocities expressed in the body frame,
gravity vector expressed in the initial camera frame Cĝ,
and metric scale λ. Further, δtk is the frame-to-frame time
difference, ∆Cpk = Cpk+1−Cpk the frame-to-frame position
difference from the BA, and kRk+1 the body frame-to-frame
rotation derived from IMU pre-integration.

kx̂k+N =
(
kHT

k+N
kHk+N

)91
· kHT

k+N · kzk+N (1)

with the frame-to-frame measurement matrix and vector

kzk+1 =

[
kα̂k+1 − BpC + kRk+1

BpC
kβk+1

]
(2)

kHk+1 =

[
−I3 δtk 03

1
2

kRC δt
2
k

kRC∆
Cpk

−I3 kRk+1
kRC δtk 03

]
(3)

However, this final step already shows the sensor limi-
tations of this visual-inertial algorithm using a IMU pre-
integration and visual optimization method. First, one can
show [21] that under constant velocity motions, the Gram-
mian of the measurement matrix kHk+N is 0. Hence the

matrix kHT
k+N

kHk+N is singular and the LLS not solvable
[22]. Similarly, in a free-fall motion, this linear formulation
yields to the measurement vector kzk+N being 0. As a result,
the estimation of the LLS Equ. (1) can only yield a state
estimate of kx̂k+N = 0, which differs from the ground
truth. Hence, in our work’s two given reference scenarios,
the visual-inertial approach cannot yield a correct initializa-
tion. This also corresponds to previous work performed on
visual-inertial closed-form solution [23] and visual-inertial
navigation system (VINS) [24] unobservability analysis. For
this reason, and to the best of our knowledge, there are
no previous works attempting to initialize a VINS system
in a constant velocity flight. Therefore, in the next section,
we will present a range-visual-inertial approach that keeps
this computationally efficient structure and can mitigate the
visual-inertial unobservable motions.

III. RANGE-VISUAL-INERTIAL INITIALIZATION

Given VIO unobservability issues discussed in the pre-
vious section, we present a new algorithm extending the
visual-inertial initialization with a range sensor. In previous
work [25], we already showed the improvements range
measurements can bring to a visual-inertial filter framework.
With our current approach, we extend the VINS-Mono with
the ranged facet constraints. Therefore, we keep the general
structure of VINS-Mono’ initialization algorithm and extend
it with the additional range sensor, which accounts for the
new scene distance information, to a five-step algorithm as
shown in Fig. 3.

A. Keyframe Selection and Initial Structure
The keyframes are selected based on a baseline criterion of

[26]. If the baseline after accounting for rotation between the
current image and the last keyframe exceeds a threshold thb,
the current frame is selected as the next keyframe. Further,
feature tracking takes place on a frame-to-frame basis with
consistent tracks developed as new frames appear.

Initially, a structure from motion (SfM) is created using the
newest and oldest keyframes that exceed a baseline thresh-
old thb. This threshold is needed to account for hover-like
motions. Then using the pose recovery criterion provided by
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Fig. 4. The plane spanned by a Delaunay triangle which the LRF
measurement intersects {WF(1),WF(2),WF(3)} is used to to derive the
estimated range iẑr from the SfM. This estimate is then compared to the
LRF distance measurement iz̆r to derive the metric scale for the structure
and camera poses.

OrbSlam [11], the initial transformation is derived using the
Fundamental or Homography matrix in the 5-point or DLT
algorithm, respectively. This provides more flexibility for
initialization scenarios, as it accounts for planar or structured
environments. This differentiation is especially needed for
downward-looking cameras, since their field-of-view more
likely covers only the ground plane when flying at a low
altitude.

B. Full Structure and Camera Poses

The other N−2 camera poses are derived using a PnP ap-
proach. First, all transforms from the initial camera pose Ck
to all other camera poses Cj , 0 < j < N − 1, j 6= k are de-
rived in a forward-PnP. Further, any missing feature matches
are triangulated. To decrease the transform calculation error
between camera frames with a large baseline, a similar back-
ward-PnP is performed. As a next step the newest camera
pose Ck and all other camera poses Cj , N − 1 > j > 0, j 6= k
are used. Again all previously untriangulated feature matches
between two image frames are triangulated. This vice-
versa PnP is chosen for two reasons: First, this increases
the number of triangulated features in the structure, which
increases the amount of information available in the later
bundle-adjustment stage. Second, the image overlap between
the initial keyframe k and any other keyframe cannot be
guaranteed. This approach tries to mitigate this issue by using
the newest frame N for the transform calculation.

C. Structure Scaling

Camera only triangulation suffers from scale ambiguity.
Therefore, an additional sensor is needed to scale the re-
sulting structure of the previous step metrically. In most
scenarios, the onboard IMU provides sufficient information
to do so. However, in the given reference scenarios, an IMU
will not yield enough metric scale information. Therefore,
an additional sensor, the laser-range finder (LRF), is added
to the system to provide single distance measurements at the
camera rate. This range is then used to scale the structure
initially.

This scaling approach follows the one proposed by
Ref. [26], which models the surface structure and the range
estimate as a function of the current states and measurement.
However, at this point in the initialization, no state estimates
are available. Therefore, only the raw, scalar distance mea-
surements iz̆r are used.

iẑr = iẑr ·
uT
ri · n

uT
ri · n

=

(WpCF2
−WpCi

)T · n
uT
ri · n

(4)

with

n =
(WpCF1

−WpCF2

)
×
(WpCF3

−WpCF2

)
(5)

All tracked features from the initial triangulation frames are
grouped in triangles using the Delaunay triangulation [27].
The triple of features in which the range measurement falls
is selected, and its range is derived in camera frame using
Equ. (4), with a visual representation shown in Fig. 4. This
approach assumes a local flatness of the plane spanned by
the selected triangle, an assumption that holds given enough
tracked features.

Then in Equ. (6) the derived plane depth is compared to
the range measurement to derive the metric scale s. This
scale is then used to scale the camera poses and resulting
structure metrically.

s =
iẑr
iz̆r

(6)

Please note that this derived scale is subject to the range
sensor’s measurement noise, feature tracker implementation,
and violation of the triangle plane real-world flatness. Hence
the derived scale might be error-prone. Consequently, the
next step performs a range-visual optimization to minimize
this initial scale error.

Further, one could argue that this scaling step can be
performed before the PnP. However we chose to do this
after the PnP for two reasons: First, the initial structure (A)
is error prone and is minorly optimized through the PnP
(B). Secondly, simulation analysis showed that scaling the
structure before the R-BA (D) yields best initialization results
overall.

D. Range-Visual Bundle-Adjustment
All sensors used in the above steps are subject to measure-

ment noise. Therefore, we perform a range-visual bundle-
adjustment (R-BA) optimization to reduce noise-induced
measurement errors. The R-BA extends the standard bundle-
adjustment with an additional term in the cost function
for the LRF measurement. This addition is necessary, as
the initial range measurement used for the structure scaling
might be noisy and thus slightly wrong. However, adding the
additional cost to the optimization reduces the impact of the
assumed Gaussian white noise on the range measurement.

iP is the i-th image projection matrix used to project the
j-th 3D-feature F(j) onto the image plane. It is selected
based on the criterion discussed in Sec. III-A. if (j) is the



corresponding normalized pixel measurement in the i-th
image. With this, the cost function to be minimized becomes

arg min
iP,F(j)

N∑
i=0

( ∣∣iz̆r − iẑr
∣∣+

M∑
j=0

d
(
iPF(j), if (j)

))
. (7)

E. Bias Estimation and Inertial Alignment
The IMU bias estimation from VINS-Mono is kept, which

estimates the gyroscope bias using the IMU pre-integration
first presented in Ref. [18]. Further, the initial acceleration
bias W b̂a = 0d m s−2 is used. Several state-of-the-art visual-
inertial estimators have shown that they can handle an initial
zero acceleration bias estimate and converge to the ground
truth [5], [13].

The remaining initial states including only the camera
frame velocities and the gravity direction, are estimated in
a LLS estimation using the metrically scaled camera poses
from the previous step. The frame to frame measurement
matrix and vector for these remaining states are

kzk+1 =

[
kα̂k+1 − BpC + kRk+1

BpC − kRC∆
Cpk

kβk+1

]
(8)

kHk+1 =

[
−I3 δtk 03

1
2

kRC δt
2
k

−I3 kRk+1
kRC δtk

]
(9)

In contrast to the VINS-Mono formulation (see Eqs. (2)-
(3)) the new full measurement matrix kHk+N ∈ R4N×(6N+3)

matrix only needs three camera poses to become invertible
and the states therefore observable. Further, regardless of
the scenario, the measurement vector is guaranteed to be
non-zero, eliminating the possibility of the trivial solution in
constant-velocity or free-fall scenarios.

IV. SIMULATION TESTS

Initially, we investigate the performance of the proposed
algorithm under the influence of standard measurement
noise. Therefore, we generated range, feature, and inertial
data in a point-based simulation under a constant velocity
motion with Wv0 =

[
1 1 0

]T
m s−1. All sensor noises

are assumed to be white Gaussian, and are set to values
representative of the sensors listed in Sec. V. We then
evaluated the initialization algorithm on 100 independent
Monte-Carlo runs.

The results of this Monte-Carlo simulation are displayed
in Fig. 5. This figure shows the mean and standard deviation
of the norm of the error in attitude, position, and velocity
throughout the window. As can be seen, for all three states,
the error norm is low. Especially the small estimated velocity
error shows that this approach can be used to initialize a
visual-inertial estimator near the optimal solution.

Furthermore, we performed various sensitivity tests with
simulated data on different parameters such as (i) fea-
ture tracking pixel noise, (ii) distance measurement noise,
(iii) number of keyframes in the initialization window,
(iv) number of tracked features and required baseline for
keyframe selection, and (v) planar and structured environ-
ments. From these tests we concluded that our algorithm
performs as expected independently of the environment, with
10 keyframes in the initialization window, and with 100−200
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Fig. 5. Monte-Carlo evaluation of the proposed algorithm with
100 independently simulated data runs with constant velocity flight of
Wv =

[
1 1 0

]T m/s and a flight height of 1 m. This result shows
the mean and standard deviation boundaries (1σ boundary) of the error for
each keyframe in the initialization window. For all runs the window was
set to 10 keyframes at an image rate of 30 Hz. The position and velocity
errors throughout the initialization period is low enough to initialize a visual-
inertial estimator.

tracked features. The authors refer to [21] for a more detailed
simulation analysis and to [28] for a stress test of the
facet assumption. Further, this evaluations showed that the
optimization can mitigate measurement noise if its standard
deviation is below 3 px for the features and 10 % of the flight
height for the range measurement.

V. EXPERIMENTS
A. Experimental Setup

The experiments were carried out on an AscTec Hum-
mingbird quadrocopter. Sensors included the internal IMU
of the Hummingbird, a Matrixvision Bluefox mvBlueFox-
MLCw camera with 640 px× 480 px resolution, and a
Garmin Lidar Range v3. Ground truth for all flights was
recorded with an Optitrack motion capture system. The
algorithm was implemented in C++, as an extension of
the open-source version of VINS-Mono using the Ceres
Solver [29] for the R-BA. It ran on OdroidXU4 under Ubuntu
18.04 and ROS melodic in SkiffOS [30].

In our test, the MAV was commanded to a constant
velocity flight of 0.5 m s−1 using the Optitrack pose as
reference input for the flight controller. Although inertial
attitude control would be more representative of an actual
mid-air re-initialization scenario, attitude and velocity control
with motion capture was deemed safer to avoid a crash in
the limited lab space. The constant velocity is representative
of a MAV applying constant thrust and controlled to a
level attitude through an IMU after a VIO failure. The
initialization algorithm was started on board in real time
using a window of 10 image frames with corresponding
LRF measurements. The initial state estimate was then used
to start the VIO navigation framework VINS-Mono. Once
initialized, the reference input of the controller was switched
from motion capture to VINS-Mono to demonstrate mid-air
recovery and stable follow-up flight. Further, the experiments
were carried out in an cluttered environment with small



Fig. 6. For the experiments a AscTec Hummingbird quadrocopter equipped
with an OdroidXU4 for onboard computations was used. The visual data
(images) were provided by and Matrixvision Bluefox mvBlueFox-MLCw
camera (coordinate system) mounted next to a Garmin Lidar Range v3 (pink
range arrow) for single range measurements.

objects lying on a plane with a maximum height difference
of 10 % of the flight height.

B. Results

The trajectory ground truth of this experiment is presented
in Fig. 2. It demonstrates that our framework can initialize
in a constant velocity flight condition, which would be
unobservable for any VIO approach. Further, our approach
can also initialize the full state of the optimization-based
estimator VINS-Mono at metric scale, and then safely use
it for the MAV control input. This figure further shows that
our framework is accurate enough to initialize an estimator
and fast enough to run onboard an embedded MAV system.
For this experiment, the computation time was measured to
be approximately 0.75 s, including a data acquisition time of
0.33 s on the OdroidXU4 embedded computer.

Furthermore, as shown in Fig. 7, the position, velocity,
and attitude error norms throughout the initialization period
are low enough to initialize visual-inertial estimators. The
mean and standard deviation of the error in the initial-
ization window within this experiment is calculated to be
2.524± 0.799° in attitude, 0.0070± 0.0051 m in position,
and 0.0794± 0.0038 m s−1 in velocity.

We then tried to start VINS-Mono with its original
initialization approach offline. Out-of-the-box VINS-Mono
does not initialize in the given scenario since insufficient
accelerations are present for VIO. For comparison purposes,
we disabled all excitation checks in VINS-Mono and tried to
initialize it under the constant velocity motion. The outcome
of this test is shown in Fig. 7 (dashed lines).

In comparison to our approach, the visual-inertial ini-
tialization algorithm of VINS-Mono results in larger initial
errors. Especially the unobservable metric scale in VINS-
Mono’s problem formulation renders it degenerate, as ex-
pected and analyzed in Sec. II-B. Subsequently, the visual-
initially derived initial state led VINS-Mono to diverge as
shown in Fig. 2.
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Fig. 7. Our approach’s attitude, position, and velocity error norms
(solid lines) of the initialization period in a real-world experiment with
constant velocity flight shown in Fig. 2. In comparison, VINS-Mono’s
initialization state error norms are presented (dashed lines). As can be seen,
our framework outperforms the visual-inertial only initialization for all
three states.

VI. CONCLUSION

Visual-inertial odometry cannot observe the metric scale
in the absence of acceleration change. This VIO limita-
tion is even more problematic in the event of mid-air re-
initialization, where either constant velocity (zero accelera-
tion) or free-fall trajectories (constant acceleration) are ex-
pected, and other navigation states are completely unknown
(unlike e.g., before take-off on the ground). We tackled this
issue through a novel range-visual-inertial MAV initialization
algorithm that can function even in the absence of excitation,
and without prior environment nor state knowledge. As a
core element of our approach, we leverage the distance
measurement of a laser range finder which is tightly in-
tegrated into the visual-inertial system for robust metric
system initialization in arbitrary situations. With the only
requirement of local flatness (i.e., planar terrain in between
three visual features) our approach is applicable in a large
variety of, even to some extent cluttered, environments.

We analyzed our proposed approach in a Monte-Carlos
simulation environment, which showed it to be robust against
standard sensor noise values. We demonstrated our approach
in real-time with closed-loop control onboard an MAV and
compared it to the start-of-the-art VINS-Mono initialization
algorithm. Future work includes outlier identification and
rejection of the facet triangulation and full integration in an
in-flight fault-detection and recovery framework.
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6DoF State Estimation with a Mesh Constrained Particle Filter For
Wheeled Robots

Pete Schroepfer1,3, Georges Chahine1,3, Cédric Pradalier1,2

Abstract— In this work, we present a highly accurate Mesh
Constrained Particle Filter (MCPF) for wheeled robots. We
demonstrate that the MCPF is capable of estimating poses
with 6DoF in real-time on an embedded computer due to
low particle count requirements. To achieve this, MCPF’s
transition function constrains particle movement to a mesh
surface approximating the surface the robot is traveling on.
By constraining the particles, we reduce the dimensions of the
effective work space the robot is operating in. In other words,
the robot is effectively lying on a manifold (locally) with 3DoF
embedded in SE(3). Importantly, by reducing this effective work
space, significantly improved accuracy is also achieved while
maintaining low particle density when compared to a dense
SPF. In addition to showing improved accuracy and real-time
performance, we demonstrate that the MCPF provides high
levels of robustness to lost or dropped anchor measurements.
Moreover, this approach has been tested on the walls of real-
world storage tanks using a magnetic-wheeled crawler in the
field.

I. INTRODUCTION

In mobile robotics, wheeled robots are fairly ubiquitous.
There are vehicles, wheeled humanoid robots, home cleaning
robots, inspection robots, and forest exploring robots, to
name a few. These robots all tend to share a common trait
insofar as they traditionally move on a smooth or relatively
smooth surface. They are often, also, equipped with wheel
encoders to provide odometry and an IMU or compass to
provide heading information.

Similarly, for most of the tasks these robots perform,
quality localization is tightly coupled with their measured
utility. For example, autonomous inspection robots (like the
one discussed in this paper) are tasked with autonomously
scanning large metal surfaces such as ships or storage tanks.
In doing so, they must identify and map hazards such as
thinning or decaying metal walls. However, if the robot
has a significant localization error, then as the error grows,
the usefulness of the hazard map diminishes, as does the
usefulness of the robot.

Many of these robots also operate in GPS-denied areas.
GPS denied areas occur wherever there is occlusion blocking
a receiver from receiving satellite signals. This may include,
among other places, being indoors or under a shelter, next to
tall buildings or structures, in forests, in mines, in tunnels,

*This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under Grant Agreement No. 871260. Corresponding author:
cedric.pradalier@georgiatech-metz.fr

1CNRS IRL2958 GT-CNRS, Metz, France
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Fig. 1. Cralwer Robot Magnetically Attached to a Storage Tank in
Bazancourt, France.

or, in our particular case, attached to a giant metal storage
tank or ship [1].

In GPS-Denied areas, one popular sensor used as an
alternative to GPS are Ultra-Wide Band (UWB) sensors.
Generally, by using either two-way ranging (TWR) or time-
of-flight (TOF), an UWB system can provide range mea-
surements with an accuracy of around ± 10cm with varying
ranges from 30 meters to 100 meters depending on the types
of filter and antenna used [2].

Given that wheeled robots with similar components are
becoming more commonplace, and localization for these
robots is often inextricably linked to their usefulness, it
behooves the robotics community to explore and report on
as many highly accurate and robust localization options it
can discover. This is even more true if the presented option
could potentially serve as an enhancing component within
other similar systems.

In this paper, this is exactly what we aim to present.
With the Mesh Constrained Particle Filter (MCPF) presented
in this paper, we show how we can leverage the fact that
wheeled robots move on a surface to enhance our particle
filter’s transition function. Below, we demonstrate that: (1) by
constraining the movement of the particles to a mesh during
the transition function the MCPF is able to achieve high
accuracy localization with 6DoF operating in real-time on an
embedded system within the crawler; (2) the mesh constraint
is essential to performance as removing the mesh constraint
greatly degrades accuracy even with extremely high particle



density; and (3) the use of the MCPF provides robustness
against lost or dropped range measurements.

II. RELATED WORK

The concept of the MCPF for wheeled robots is rooted
in a body of combined works from both non-mobile and
mobile robotics. In both subfields, there is support for the
concept of leveraging a surface approximation in a Recursive
Bayesian Filter. While in mobile robotics, there is strong
support for using a PF over an EKF when using range based
measurements such as UWB to correct global position.

A similar implementation to the MCPF is the Manifold
Particle Filter (MPF) used for localizing a robot arm and
underactuated hand [3]. Like the MCPF, the MPF leverages
a surface approximation to limit the possible poses of the
robot [3]. This, in turn, improves the filter’s accuracy while
simultaneously lowering the required number of particles to
achieve this [3].

While the MPF is similar, one primary difference is that
the manifold is not constraining the motion model. In our
case, we have a motion model in SE(2) that we apply to
particles in SE(3). Here, within the transition function, the
particle motion is constrained to a surface approximation
because, unlike a mechanical arm, the robot cannot leave the
surface. Furthermore, due to the physical attitude constraints
enforced by the surface on the wheeled robot, we are able to
leverage information about the normal vector of the manifold
to constrain the robot’s pose.

In wheeled robotics, the Invariant Extended Kalman Filter
(IEKF) also uses surface approximations to increase accuracy
by projecting the estimated pose to the surface of a manifold
as ”measurement” update [4]1. The Manifold Invariant Ex-
tended Kalman Filter (M-IEKF) then offered an improvement
to the IEFK by both shifting the manifold constraint to the
transition function, and mapping the motion model in SE(2)
directly to the manifold in SE(3) eliminating any error caused
by projection [5]. However, the M-IEKF implemented in
[5] was implemented with a position measurement model,
assuming a successful trilateration of the UWB anchors at
every step. As will be discussed later, this assumption is
not valid in our settings. Because of the specific structure
of the state representation, integrating non-linear range mea-
surements in the M-IEKF is a significant challenge that was
not addressed in this paper.

Additionally, a significant difference between the situation
presented in [5] and the current paper stems from the
increased scale, in terms of size and complexity, of the
experiment surface. While UWB is generally very accurate,
when line-of-site (LOS) is not available it requires walls or
structures to bounce signals off to ensure the tag can receive
measurements. As mentioned above, our experiment was
conducted outdoors in an open space with very few objects
or walls for signals to bounce off of. As a result, the tag
often received only between 0 and 2 messages, as seen in

1Note that ”Measurement” here is not a real measurement by a sensor,
but instead just a state correction performed after motion is applied

Fig. 2. caption.

Figure 5. Based on [6] it is unclear whether an EKF could
remain accurate with sporadically dropped or long periods of
dropped range measurements. This too was not explored in
[5] where the experiment was performed on a smaller scale
with an inwardly curved plate where LOS for four anchors
measurements could be guaranteed.

In addition to the issue of scale, the choice of a particle
filter when using UWB measurement is also supported in
the current literature with respect to mobile robotics. A
potential weakness of the EKF comes from the assumption
that measurement noise is Gaussian and that pose probability
distributions are not multimodal[7], [8], [9]. As range sensors
can result in multimodal distributions and often exhibit
non-Gaussian noise [7], [9], using an EKF may create a
discrepancy between the model and reality, resulting in an
increased estimation error [10].

Lastly, for particle filters using in mobile robotics, to the
best of the authors’ knowledge, surface approximation has
rarely been integrated in such a filter, if at all to constrain the
pose estimate. The closest integration found was in a case
where a mesh had been integrated within a LiDAR model
as part of range based correction step [11]. However, in this
case, the mesh in only used to support the observation model
but not used to constrain the motion model.

III. MESH CONSTRAINED PARTICLE FILTER

In this section, we first provide the basic theoretical
assumptions underlying the key components of the MCPF,
namely, the initialization and translation functions. We then



Fig. 3. 3D path comparison of the 200 particle MCPF compared to a
20000 SPF and the ground truth (both a front and side view)

discuss, at an abstract level, the methodology of these two
components.2 Finally, we show how, at the implementation
level, we are able to instantiate the MCPF.

A. Assumptions

We are considering a robot R with a starting position at r
and a state (x, y, z, q) where q is a quaternion representing
orientation. R is moving on a surface that can be defined
mathematically as a smooth manifold M ⊂ R3. As R
is moving on M and is a rigid body wheeled robot, R’s
orientation will be constrained by its location on M and the
normal vector at that location. We further assume there exists
some approximation of M , aM ⊂ R3, such that each point

2Importantly, the main contribution of the MCPF comes from the sur-
face approximation constraint in the transition function. The correction or
measurement steps and resampling use conventional models and algorithms
for UWB and an IMU. As such, we do not address these elements of the
MCPF as part of the methodology.

ai ∈ aM is a good approximation of a point mi ∈ M .
Lastly, we assume that during initialization we know some
point ki ∈ R3 in a neighborhood of the real robot position
r.

B. Methodology of Key Components

1) Initialization: For initialization, the goal is to create
a normally distributed set of particles attached to the mesh,
close to the point r. Additionally, the set of particles should
have a uniform distribution of orientations, with each parti-
cle’s pose being consistent with the normal vector of M at
that particle’s respective position.

To this end, we create an initial sphere centered around
ki. Within this sphere, N particles are created following
a normal distribution centered on ki. The orientations, by
contrast, follow a uniform distribution because we do not
assume knowledge of an approximate initial orientation.

Once the sphere of particles is created, each particle
Pi ∈ SE(3) is projected to the closest point on aM using
a general projection function fproj(Pi). This results in a set
of particles Pn attached to the surface of, aM , normally
distributed with a center close to r.

Once each particle Pi is attached to the surface of mA, we
further constrain the orientation of Pi to be consistent with
a robot driving on M by leveraging the normal vector of M
at Pi’s position. Here we let the attitude of Pi be expressed
as a rotation matrix A ∈ SO(3) not yet subject to mesh
constraints and B ∈ SO(3) as a rotation matrix subject to
the mesh constraints. We then express A and B in their 3D
vector basis form: A = [Ax, Ay, Az], and B = [Bx, By, Bz].
Let n be the normal vector to the mesh. A particle on the
local mesh plane will have its attitude constrained such that:

Bx =
Ay × n

∥Ay × n∥
(1)

By =
n×Bx

∥n×Bx∥
(2)

Bz = n (3)

B = [Bx, By, Bz] is therefore a family of orthonormal
unit vectors, hence the 3D basis of a rotation matrix that
describes the orientation of Pi as constrained by aM , with
Bx pointing forward, By sideways, and n pointing outwards.

2) Transition: The transition step is completed in a
manner similar to the process stated in the initialization
section. First we apply standard motion by determining the
displacement δO = O−1

t-1 Ot where Ot is a transformation
matrix representing the odometry readings at time t. Because
we consider a wheeled robot with a 2D odometry model, we
have δO ∈ SE(2). We expand it to SE(3) and calculate the
new state of each Pi as Pi = Pi δO.

Finally, each particle Pi is projected using fproj(Pi) onto
aM and, likewise, each particle’s orientation is further con-
strained to aM using eq. 1 to 3.



C. Implementation

In this section, we will give a lower level account of
how the key components of the MCPF were implemented
in our system, in addition to how use utilized the sensor
measurements. As a general matter, the implementation of
the MCPF was done in C++ using CGAL (5.x) for handling
the mesh and mesh projections.

1) Initialization: To create the initial known position, ki
we perform a trilateration using the range measurements
from four UWB anchors and then publish these results. The
MCPF can then listen for the results during initialization.
Note that the trilateration was used primarily for conve-
nience, as this could be done by manually measuring or some
other estimation method.

To create aM , we generate a point cloud of the surface the
robot will be moving on. We then processes this point cloud
to create a mesh. The mesh data structure is then provided
to the MCPF via a service call. By using a service call, this
implementation allows other nodes to share the same mesh.3

2) Measurements: For the range measurements, we are
using a standard UWB sensor setup where a tag receives
range measurements from a set of anchors. When we receive
a range measurement, we calculate the Euclidean distance
between the known position of the anchor and Pi and then
compare that to the range measurement to determine the
particle likelihood.

For the orientation measurement, we extract the ac-
celerometer data from the IMU and compare it with a
predicted gravity vector using the particle orientation. We
then use the geodesic distance between the two normalized
vectors in S(2) to determine the particle likelihood.

IV. FIELD EXPERIMENT

A. Experiment Description

In our case, the MCPF was field tested on a large storage
container at a factory in Bazancourt, France. The storage
containers were approximately 20 meters high and 20 meters
in diameter. The robot is an Altiscan magnetic crawler
manufactured by Roboplanet4, with large magnetic wheels
and employing a differential drive system (the tank and
crawler can be seen in Fig. 1). The magnetic wheels are
strong enough to attach the robot to metal objects at least
1mm thick. The CPU used by the crawler (which also ran the
particle filter in real-time) was an Intel®Atom®x5-E3940.
The sensors used for the particle filter were an ICM-20948
IMU and Decawave’s MDECK1001 UWB Development Kit
with a default configuration. Importantly, the MDECK1001
tag can only receive a maximum of the 4 closest anchors at
any one time.

To create the mesh used by the MCPF, we took a high
density laser scan of the storage tank with a Leica MS-60
total station (Leica). The scan was then processed, converted

3As a practical matter, using a mesh here instead of a mathematical
model allows some expanded functionality through mesh tools that have
been developed for ROS as well as visualization though RVIZ mesh plugins.

4http://www.roboplanet.fr/en/

TABLE I
AVERAGE RMSE COMPARISON

Particles Mesh NoMesh
200 0.0856 0.3694
500 0.0780 0.3389
20000 – 0.2532

into a mesh data structure, and shared as a mesh message
though a service call. The robot was then placed on the
bottom of the storage tank where it could be tracked by the
total station to create ground truth.

Two anchors were placed at the top of the storage tank,
while 7 anchors were paced at various points around the base
of the tank. The crawler then performed a mission scaling
the tank, returning to the bottom, rotating, and then finally
moving to the right. The movement of the crawler is mostly
autonomous except for asking the user for input when an
object, such as the safety rope, is observed by the crawler
and considered a potential obstacle.

During the initial testing, the MCPF was able to run in
real-time during the experiment and all sensor data was
recorded in a ROS bag file. For validation purposes, we
used this bag file without the recording of the particle filter
to provide a statistical performance analysis of the particle
filter, the results of which are reported below.

Lastly, to measure positional ground truth, the total station
was used in tracking mode, whereby it could track the motion
of a 3D Prism attached to the handle of the crawler. Motion
tracking is done with millimeter precision but with some
timing uncertainty reducing the precision to the centimer
scale.

B. Evaluation

In this section, we evaluate the performance of the MCPF
with respect to three metrics, namely the: (i) accuracy of
the MCPF as compared to an identical filter without the
mesh constrained transition function, which for convenience,
we will call the standard particle filter (SPF); (ii) computa-
tional performance cost of adding the mesh constraint when
compared to increasing particle sizes of the SPF; and finally
(iii) robustness of the MCPF with respect to dropped or lost
signals.

1) Position Accuracy: The positional accuracy of the
MCPF is greatly improved when compared to the SPF.
Figure 3 shows the crawler’s estimated path from both the
MCPF with 200 particles and the SPF with 20,000 particles.
As can be seen in this image, the SPF estimates the path of
the crawler as if it were oscillating on and off the mesh,
making lateral movements as it moves up the wall. By
contrast, the MCPF not only stays attached to the wall (as
would be expected), large lateral movements are constrained
as well.

The dramatic increase in accuracy of the MCPF is also
evidence by the data in Table I. Here, the MCPF had an
RMSE of 0.0856 and 0.0780 with a particle density of 200
and 500, respectively. By contrast, the SPF had an RMSE
of 0.3694 and 0.3389 with particle densities of 200 and 500



Fig. 4. Comparison of the RMS translation error for 200, 500 and 20000 particles, against ground truth obtained from the Leica MS60 Total Station.
Shaded areas represent the standard deviation of the error. The inclusion of mesh constraints dramatically improves position estimates, as well as the
standard deviation of the error.

Fig. 5. Dropped anchor measurements during the field test overlaid on the
RMSE graph for the 200 Particle MCPF. Figure 4 with 200 particles

respectively. Moreover, even when the particle density was
increased to 20,000 RMSE of the SPF was only able to get as
low as 0.2532 (which is still four times higher than the error
of the MCPF with only 200 particles). This juxtaposition of
accuracy of the MCPF and the SPF not only demonstrates
the improvement of the MCPF, but shows how central adding
the mesh constraint was to this improved accuracy, as that
is the only key difference between the two cases.

2) Orientation Accuracy: Although a total station is ca-
pable of providing millimeter-accurate position estimates, a
single station is incapable of providing attitude estimates. To
that end, an experiment was performed where the robot was
driven vertically, on a straight line. The robot is therefore ex-
pected to maintain its initial orientation throughout the trajec-
tory, which we will call the “ideal orientation”. By comparing
the current attitude to the ideal orientation, Figure 6 shows
how the inclusion of mesh constraints significantly improves
attitude estimation. Still in the same figure, it is shown that
the standard deviation is significantly smaller after adding
mesh constraints. In numbers, the average geodesic residual

Fig. 6. Average residual geodesic over 20 runs, after comparing the
robot attitude to that of an ideal orientation i.e., when the robot is moving
vertically on a straight line (lower is better). Shaded areas represent the
standard deviations of the respective residuals.

for 20 runs with mesh constraints is 0.2574 rad. with an
average standard deviation of ±0.0701 rad.; whereas 20 runs
without mesh constraints yielded a residual of 0.4263 rad,
with an average standard deviation of ±0.2073 rad..

3) performance: The accuracy benefits from the MCPF
strongly outweigh the performance cost of adding the mesh
projection into the transition function. The average execution
time for the MCPF with 200 particles was 0.004281 ns while
the average execution time for the MCPF with 500 particles
was 0.009769 ns. As can be seen in Table I, the SPF has
similar performance time at around 1500 and 4000 particles
respectively. This means that, while the execution time of the
SPF, below 1500 particles, outperforms the MCPF, the SPF,
even when running 20,000 particles, cannot provide similar
accuracy (see Table I.

By implication this also means, if a robot is capable of
running a particle filter with 1500 particles in real-time, then
that same robot could likely run the MCPF in real-time while



Fig. 7. Here you can see the execution time growth for a conventional
particle filter with 6DoF (i.e. the MCPF with the mesh constraint removed)
as particles increase. Layered on top is average execution time of the MCPF
with 200 and 500 particles.

benefiting from improved accuracy and stability.5

4) Robustness to Dropped Measurements: Based on the
Figure 4 and Figure 5, the MCPF appears to be fairly robust
against both sporadically dropped anchor measurements and
periods of low anchor measurements. As can be seen in
Figure 5, the UWB used outdoors in this setting suffered
from a significant number of dropped or missing range
measurements during the field test. During the beginning and
the end of the crawler’s mission, the lost anchors appear to
be dropped sporadically. Whereas around the middle (starting
around 180s) there is a consistent state of dropped or missing
measurements (in the middle this is likely due to the crawler
being at the top of the tank and out of range from many
of the anchors placed on the ground. Regardless, it can be
seen in Figure 5 and Figure 4 that there are no major spikes
in the RMSE during either the tail-ends or the middle of
the crawler’s mission. The consistent level of the RMSE for
the MCPF despite both sporadically missing and consistently
missing measurements strongly implies it is robust to these
situations.

V. CONCLUSIONS

As can be seen from the results of the experiment dis-
cussed above, the addition of a mesh constraint to the particle
filter greatly enhances the accuracy of the particle filter. By
examining an identical particle filter with the mesh constraint
removed and finding that even with 20,000 particles the
MCPF still benefits from significantly higher accuracy with
only 200 particles, it seems likely the mesh constraint is the
primary cause of the increased performance.

Further, we have showed the MCPF is also extremely
robust to dropped or periods of low measurement counts.
As noted above, we observed both sporadic and prolonged
periods of dropped anchor measurements. The RMSE during
these periods barely varied. As such, the dropped or low

5Indeed, as mentioned in section IV.A we were able to run the MCPF in
real-time on an embedded computer that was simultaneously running all the
other required applications necessary for the robot to operate autonomously
and control its components.

anchor periods likely had little effect on the accuracy of the
MCPF.

As a final note, it is important to recognize that the
most significant change to the presented particle filter was
only within the transition function. As such, this update to
the transition function could be leveraged by several other
instantiations of the particle filter. While we were not able
to test this formally in this experiment, this could serve as a
tool that could be plugged into other projects to potentially
provide significant enhancements. This idea is even further
bolstered by the similarity between what was done here
and what was done in the case of the robot arm discussed
above[3]. As such, further exploration of the portability
of this transition function enhancement could also warrant
further investigation.

ACKNOWLEDGMENT

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under Grant Agreement No. 871260.

REFERENCES

[1] J. Siva and C. Poellabauer, Robot and Drone Localization in
GPS-Denied Areas. Cham: Springer International Publishing,
2019, pp. 597–631. [Online]. Available: https://doi.org/10.1007/
978-3-319-92384-0 17

[2] A. R. Jiménez and F. Seco, “Comparing Decawave and Bespoon UWB
location systems: Indoor/outdoor performance analysis,” 2016 Interna-
tional Conference on Indoor Positioning and Indoor Navigation, IPIN
2016, no. October, pp. 4–7, 2016.

[3] M. C. Koval, M. Klingensmith, S. S. Srinivasa, N. S. Pollard, and
M. Kaess, “The manifold particle filter for state estimation on high-
dimensional implicit manifolds,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 4673–4680, 2017.

[4] A. Barrau and S. Bonnabel, “The invariant extended Kalman filter as
a stable observer,” IEEE Transactions on Automatic Control, vol. 62,
no. 4, pp. 1797–1812, 2017.

[5] B. Starbuck, A. Fornasier, S. Weiss, and C. Pradalier, “Consistent State
Estimation on Manifolds for Autonomous Metal Structure Inspection,”
no. Icra, pp. 10 250–10 256, 2021.

[6] S. Pfeiffer, C. D. Wagter, and G. C. Croon, “A Computationally
Efficient Moving Horizon Estimator for Ultra-Wideband Localization
on Small Quadrotors,” IEEE Robotics and Automation Letters, vol. 6,
no. 4, pp. 6725–6732, 2021.
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Consistent State Estimation on Manifolds
for Autonomous Metal Structure Inspection

Bryan Starbuck1†, Alessandro Fornasier2†, Stephan Weiss2, and Cédric Pradalier1

Abstract— This work presents the Manifold Invariant Ex-
tended Kalman Filter, a novel approach for better consistency
and accuracy in state estimation on manifolds. The robustness
of this filter allows for techniques with high noise potential
like ultra-wideband localization to be used for a wider variety
of applications like autonomous metal structure inspection.
The filter is derived and its performance is evaluated by
testing it on two different manifolds: a cylindrical one and
a bivariate b-spline representation of a real vessel surface,
showing its flexibility to being used on different types of
surfaces. Its comparison with a standard EKF that uses virtual,
noise-free measurements as manifold constraints proves that it
outperforms standard approaches in consistency and accuracy.
Further, an experiment using a real magnetic crawler robot
on a curved metal surface with ultra-wideband localization
shows that the proposed approach is viable in the real world
application of autonomous metal structure inspection.

I. INTRODUCTION

Routine inspection of large metal structures is of the
utmost importance in avoiding environmental catastrophe
and maintaining safety standards. Small differential-drive
robots with magnetic wheels are being deployed on vessels
and cargo ship hulls to ensure that these standards are met,
but as of yet, the task is being completed via manual op-
eration. Given the expansive dimensions of these structures,
completing this task autonomously would be preferable, but
with such high stakes, having the best localization accuracy
and consistency is paramount. Even though classical methods
for state estimation exist, they do not consider the fact that
the robot is a planar robot moving on a curved surface. Thus,
they tend to estimate the six-dimensional state, enforcing
constraints on all known degrees of freedom, affecting the
consistency of the approach. Therefore, motivated by the
recent development of the consistent Invariant Extended
Kalman Filter (IEKF) [1] [2] [3] [4], in this work, we
propose a Manifold Invariant Extended Kalman Filter, a
novel approach to consistent state estimation on manifolds
with application to ship hull inspection.

A metal structure, e.g. a ship hull, can be thought of as
a smooth surface embedded in three-dimensional Euclidean
space, which can be viewed as a two-dimensional, differen-
tiable, Riemannian manifold. This allows us to select a chart
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1Bryan Starbuck and Cédric Pradalier are with Georgia Tech
Lorraine - CNRS UMI 2958 bstarbuck3@gatech.edu,
cedric.pradalier@georgiatech-metz.fr

2Alessandro Fornasier and Stephan Weiss are with the Con-
trol of Networked Systems Group, University of Klagenfurt, Austria
alessandro.fornasier, stephan.weiss@ieee.org
†These authors contributed equally

Fig. 1. Simulation of a Magnetic Crawler robot (green circle) on a Ship
Hull with an Ultra-wideband Localization Grid (red circles).

from the maximum atlas and hence define a chart map, a con-
tinuous, invertible, bijective map, that maps each point of the
considered manifold to a two-dimensional Euclidean space.
The full state of the planar robot moving on the manifold is
six-dimensional, including position and orientation within a
three-dimensional euclidean space, however, its ”planarity”
gives only three degrees of freedom: a two-dimensional
position and the heading angle. Therefore, by applying a
consistent IEKF on the product space R2 × SO (2), the
localization problem can be solved entirely on the chart.

Being able to evaluate the surface and it’s derivatives at
any point is necessary to create a basis for the tangent space
in order to recover the full orientation of the robot from the
minimal state estimated on the chart. Given that there are no
equations for generic metal structures like a ship hull, and
that the equation of a surface must be known to apply the
proposed methodology, a bivariate b-spline representation of
the surface was recognized as a sufficient substitute. This can
be obtained by extracting the vertices of the surface from its
CAD model for interpolation, or by taking a laser scan of
the structure and interpolating the resulting point cloud.

The propagation model of the magnetic crawler robot is
based on its odometry measurements [5], but even with high
precision wheel encoders, this is only reliable for predicting
the robot’s state within a plane that is tangent to the surface.
The measurement model for state localization is given by
modelling ultra-wideband (UWB) range measurements with
a trilateration framework [6], which in ideal conditions can
accurately update the robot’s position within ±5 cm, but
with high noise potential from wave deflection off the metal
surface, this is not a safe assumption to make [7]. Therefore,
to account for the inherent drifting from the surface that the



robot’s state will experience, classical approaches tend to
solve the localization problem by forcing constraints within
the Extended Kalman Filter (EKF) framework [8]. Imposing
two virtual, zero noise measurements as constraints such
that the first constraint maps the state of the robot to the
surface, and the second one maintains collinearity between
the vertical axis of the robot and the normal to the surface
resulting in a full estimation of the robot’s position and
orientation, but sacrificing the filter’s consistency. With the
loss of consistency, the loss of accuracy and robustness
follows. To validate the benefit and versatility of the proposed
approach compared to classical approaches, simulations were
carried out specifically on cylindrical and curved surfaces,
simulating respectively a cylindrical vessel and a ship hull.
Moreover, An experiment with a real magnetic crawler robot
on a curved metal plate has been performed to show the
feasibility of the methodology in real-world scenarios.

II. RELATED WORK

Strategies for metal structure inspection can take on many
forms, but in every case, fundamental questions must be
investigated, such as: Which sensors should be used for map-
ping and localization? and, Which filtering technique will
produce the best results? For bridge inspection, unmanned
aerial vehicles (UAVs) equipped with lidar for mapping and
visual, inertial odometry systems for localization collect data
from the bridge to be processed for structural analysis [9].
For ship hull inspection, autonomous underwater vehicles
(AUVs) equipped with cameras for mapping and sonar sys-
tems for localization similarly complete the task [10]. How-
ever, it should be noted that the inspection of metal structures
and vessels is not solely confined to airborn inspection or to
below the waterline. In fact, large cargo ships can protrude
up to and exceeding fifty meters above water level espe-
cially when unloaded. Therefore, to complete the inspection
most efficiently and in it’s entirety, utilizing a combination
of UAVs, AUVs, and differential-drive, magnetic-wheeled
crawler robots could be quite advantageous.

The crawlers hold primary responsibility for inspecting
the portion of the ship hull that protrudes from the water,
and high accuracy localization is fundamental to this being
accomplished autonomously. There are various sensors that
come to mind as candidates for correcting the position of
the robot such as RTK-GPS, Wifi, and UWB. RTK-GPS is
too unreliable given that clear line of sight to satellites is
always required, and Wifi is also unreliable because it is too
sensitive to interference. UWB which is based on the time of
flight of wave transmission resulting in a range measurement
is proven to be a reliable method of localizing multiple
moving targets [11]. The major factor which highlights
UWB as a more robust method for this application is that
it has high bandwidth meaning that the waves experience
less interference while reliably transmitting small packets of
data at a distance generally up to 30 meters [12]. Although
UWB is generally used for indoor object tracking, given that
more specialized filters are being developed to enhance its
robustness, it is becoming increasingly feasible to experiment
with outdoor applications like metal structure inspection. It
therefore follows that a grid of UWB beacons for a robot

Fig. 2. Magnetic Crawler Robot (green arrow) on a Curved Metal Surface
with Ultra-wideband Localization (red circles) and laser (yellow arrow) to
track the robot for ground truth.

to localize with respect to could be temporarily installed on
the side of a ship hull. Fig. 1 shows a simulation of a ship
hull with a magnetic crawler robot and four UWB beacons
in place to form a localization grid.

Two main factors to consider when developing a filter
for a problem like this are its accuracy and consistency.
It can be difficult to maintain accuracy when using UWB
for metal structure inspection due to high noise from wave
deflection off the metal surface. This error causes a prolonged
time of flight resulting in over-exaggerated range measure-
ments. Some propose including methods of detecting these
divergences by analysing the noise distribution to decide
if a measurement is usable [13]. Others suggest loosely or
tightly coupled filters to resolve the problem [14]. A loosely
coupled, two step update of orientation correction followed
by position correction can give good results, although it
is said that a tightly coupled measurement model, where
position and orientation are corrected at the same time can
better overcome large positioning errors [15]. Even when
using tightly coupled EKFs to achieve higher accuracy,
there is still the likelihood of inconsistency in this case
due to the aforementioned problem related to the robot’s
planarity being expressed with six degrees of freedom. This
can cause the covariance of the robot’s state to become
disproportionately small resulting in an overconfidence in
the propagation and eventually a divergence to an incorrect
solution [16]. As Manifold filters solve this problem, they
have proven themselves to be more consistent, and more
accurate on average, than other filters [17]. The Invariant
filter formulation [1] [2] [3] is proven to solve the afore-
mentioned problems by ensuring the Log-Linear property of
the error, that is, the independence of the error dynamics
from the state estimate. We employed the Invariant filter
formulation within a manifold-based space showing that our
Manifold Invariant Extended Kalman Filter (M-IEKF) results
in greater consistency and improved accuracy.

III. THEORY

In this section, a general understanding of differential
geometry, manifolds, and bivariate b-spline surface repre-
sentations is introduced.

A. Manifolds

An n-dimensional manifold M is a topological space
(M,Θ) with the property that each point p ∈ M has a
neighborhood that is homeomorphic to the Euclidean space



Rn. Thus, if ∀ p ∈M,∃ U ∈ Θ | σ : U 7→ σ (U) ⊂ Rn for
which the following conditions hold:

σ is invertible, thus ∃ σ−1 : σ (U) 7→ U (1)
σ is continuous (2)

σ−1 is continuous (3)

Then (U , σ) is called a chart at (M,Θ) and
σ : U 7→ σ (U) ⊂ Rn is called a chart map.

Although there are different classifications of manifolds,
differentiable manifolds are of primary focus along this work,
because this type of manifold allows a globally differentiable
tangent space, shown in Fig. 3, to be defined using calculus.
For each point p ∈M, the tangent space TpM is the space
formed by the collection of all tangent vector velocities that
a curve γ (t) passing through p may have. More formal
definitions and a more detailed introduction of the tangent
space can be found in [18].

B. Surfaces
Considered smooth surfaces embedded in R3,

which in practice would cover almost all encountered
vessel surfaces, are 2-Dimensional parallelizable
manifolds M = {(x, y, z) ∈ R3 | φ (x, y, z) = 0}, where
φ : R3 → R is a scalar function that imposes a constraint
that defines the shape of the surface. A manifold is called
parallelizable if there exists a smooth vector field {B1, B2},
such that for every point p ∈ M, the tangent vectors
{B1 (p) , B2 (p)} provide a basis of the tangent space TpM
at p. Within these surfaces being considered are explicit
surfaces, where one of its variables can be solved for given
the constraint imposed by φ (x, y, z) = 0 (e.g. a paraboloid),
and implicit surfaces which are described by an implicit
equation φ (x, y, z), where one of its variables cannot be
solved for (e.g. a cylinder). However, any given surface
embedded in R3 can always be written in its implicit
form φ (x, y, z) = 0, where the zeros of the constraint are
the points p ∈ M of the surface. Therefore, the basis
of the tangent space TpM at p, and thus the manifold
parallelization, can be defined as follows:

V1 (p) =
[
1 0 Dxφ (x, y, z)

]T
(4)

V2 (p) =
[
0 1 Dyφ (x, y, z)

]T
(5)

Although this way of defining the parallelization is per-
fectly valid, it is not the only admissible one, and, as shown
in Fig. 3, one can also choose a parallelization which forms
an orthonormal basis of the tangent space TpM at p:

L1 (p) = Dxφ (x, y, z)V2 (p)−Dyφ (x, y, z)V1 (p) (6)
L2 (p) = Dxφ (x, y, z)V1 (p) + Dyφ (x, y, z)V2 (p) (7)

B1 (p) =
L1 (p)

‖L1 (p)‖
B2 (p) =

L2 (p)

‖L2 (p)‖
(8)

Then, the normal vector to the tangent space TpM can be
computed at p as follows:

L3 (p) =
[
Dxφ (x, y, z) Dyφ (x, y, z) −1

]T
(9)

N (p) =
L3 (p)

‖L3 (p)‖
(10)

Fig. 3. Illustration of a manifold M, the tangent space TpM at p ∈ M
and its basis vectors {B1 (p) , B2 (p) , N (p)}.

Furthermore, for any given surface, or in other words,
for any considered manifold, we can choose a chart and
hence a continuous, differentiable, and invertible chart map
σ : M → R2 which maps points from the manifold to a
euclidean space of a dimension equal to dim (M).

C. Spline Interpolation
Bivariate b-splines, which are piecewise polynomial func-

tions can fit a variety of complex shapes while maintaining
continuity in their derivatives. This surface representation
can be evaluated at any point, and being a polynomial, the
derivatives are easily obtained, making it sufficient to create
a basis for the tangent space so that the manifold properties
and constraints can be applied in the state estimation. The
surface is defined as follows:

f(x, y) =

k∑
i=1

l∑
j=1

BxiByjcij (11)

The coefficients cij are determined from the vertices being
interpolated. The b-splines Bx and By are determined from
their endpoints, known as knots, in each respective dimen-
sion, for each piecewise polynomial. Then, the coefficients
are multiplied by the tensor product of the b-splines resulting
in a surface [19].

IV. METHODOLOGY

In this section, the general problem of state estimation
for a wheeled robot moving on a smooth surface and a
detailed description of the adopted methodology to solve
this problem is introduced, followed by the experimental
procedure that was carried out. This includes the process of
charting the manifold and applying an M-IEKF to a minimal
state represented on the product space between the chosen
chart and SO (2), or directly on SE (2).

The key to implementing the methodology is to first find
a chart that covers the whole manifold being considered, and
hence find a continuous, differentiable chart map σ (p), and
its inverse σ−1 (u, v).

Let us first consider the easiest case of an explicit, smooth
surface described by an explicit function where one of the
variables involved is solved for. For example, z = f (x, y).



Fig. 4. Illustration of stereographic projection leveraged to define a
continuous, differentiable and invertible chart map on the cylinder.

In this case, for every p ∈M, the chart map and its inverse
are simply determined as follows:

σ (p) = σ (x, y, z) =

[
u
v

]
=

[
x
y

]
(12)

σ−1 (u, v) = p =

xy
z

 =

 u
v

f (u, v)

 (13)

In the most difficult case of implicit, smooth surfaces, a
chart, and hence a chart map covering the whole manifold
needs to be defined without having a simple and predefined
recipe to apply. Consider a cylinder of radius R and height
h as a possible manifold to cover with a chart. As a first
solution, mapping every point of the cylinder to a plane by
unwrapping the cylinder seems logical, however, this solution
will result in discontinuities at the border of the map at 2π.
Instead, the stereographic projection can be leveraged to find
a continuous, differentiable chart map, shown in Fig. 4, and
defined as follows:

σ (p) = σ (x, y, z) =

[
u
v

]
=

[
xh

exp(z)
yh

exp(z)

]
(14)

σ−1 (u, v) =

xy
z

 =


Ru√
u2+v2

Rv√
u2+v2

log
(

Rh√
u2+v2

)
 (15)

Once a chart covering the manifold has been found, an
IEKF is applied on a space which is partially defined by
the chosen chart and then lifted back to all the estimated
results on the manifold. In order to do so, first, a mapping
that allows us to map a velocity vector (or displacement
vector) [∆b1 ∆b2]

T on the tangent space TpM at p to a
velocity vector (or displacement vector) [∆x∆y ∆z]

T on R3

must be found. Then, the chosen chart map must be used to
project the robot position to the chart. In general, if a wheeled
robot is moving on a manifold and pk = {xk, yk, zk} ∈ M
is the position of the robot at a given time step k, and
[∆b1k ∆b2k]

T ∈ TpM is the linear displacement vector in
the tangent space, then we can compute:∆xk

∆yk
∆zk

 =
[
B1 (pk) B2 (pk) N (pk)

] ∆b1k
∆b2k

0

 (16)

The robot position projected on the manifold can then be

easily computed through the chosen chart map as follows:[
uk
vk

]
= σ (xk + ∆xk, yk + ∆yk, zk + ∆zk) (17)

It is important to note that if the velocity vector (or
dispacement vector) [∆b1 ∆b2]

T on the tangent space TpM
at p is affected by gaussian noise, the linearity of the mapping
in Eq. (16) will allow its gaussianity to be preserved.

If a minimal state representation given by
X = (t,R (θ)) = (u, v,R (θ)) ∈ R2 × SO (2) on the
product space between the chosen chart and SO (2), where
the rotation defined by SO (2) is the rotation of the robot
about its own vertical axis, thus its heading, then an IEKF
can be designed following algorithm 1.

In the case of the ship hull simulation, the same method-
ology is applied to a bivariate b-spline representation of the
surface. The vertices are extracted from the CAD model of
the ship and interpolated. In the case of the real metal plate
experiment, the vertices are taken from a laser scan of the
surface before the experiment is carried out, and the point
cloud is interpolated. Fig. 2 shows the magnetic crawler robot
attached to the curved metal surface that was used, with a
UWB beacon attached to it (a tag), and another in the corner
(an anchor). Only one anchor is shown, but In total there
were four. The laser was also used during the experiment to
track the robot for ground truth. The robot collects four tag-
to-anchor ranges at a time and uses trilateration to compute
its position as a measurement in the update function of the
M-IEKF algorithm.

V. EXPERIMENTS

A. Evaluation

In this section, the performance of the M-IEKF is eval-
uated first by testing it on a cylindrical manifold to show
its ability to work with any surface that is a parallelizable
manifold and to simulate the case of a cylindrical vessel.
The M-IEKF is then compared to a standard filter (MC-
EKF) that uses two virtual, zero noise measurements to keep
the state constrained on the curved surface. Moreover, as
a proof of concept for metal structure inspection, we have
tested the M-IEKF on a simulated ship hull showing that
the proposed methodology can handle the case of a priori
not-known surface obtained by bivariate b-spline intepolation
from known points on the surface. Finally, the real world vi-
ability of the M-IEKF in metal structure inspection is shown
with an experiement employing a magnetic wheeled crawler
robot on a curved metal surface. In this last experiment, the
triangulated position of the robot was availabe via UWB
measurements.

For the two simulated tests, a Monte-Carlo simulation
of N = 100 trials was run. We computed the Root Mean
Squared Error (RMSE) in position and orientation, further-
more, the Average Normalized Estimation Error Squared
(ANEES) were computed for each time step, averaged over
the N trials, and compared between the two filters. The
aforementioned metrics are defined as follows:



Algorithm 1: IEKF on the product space R2×SO (2)

Input: X̂+

k−1, P̂
+
k−1,∆bk,∆θk,yk

Propagation
// Map estimate onto M
p̂+
k−1 = σ−1

(
t̂+
k−1

)
// Robot rotation Ck−1 in R3

Bk−1 = [B1 (pk−1) B2 (pk−1) N (pk−1)]

Ck−1 = Bk−1

[
R (θk−1) 0

0T 1

]
// Map deltas from TpM to R3

∆pk = Ck−1∆bk

// Projection onto the chart
t̂−k = σ

(
p̂+
k−1 + ∆pk

)
// IEKF rotation propagation

R
(
θ̂−k

)
= R

(
θ̂+
k−1

)
Exp (∆θk)

// Jacobians

Fk =

 ∂σ(σ−1(tk−1))
∂tk−1

∣∣∣∣
t̂+
k−1

1


Gk =

[
∂σ(pk)
∂(pk)

∣∣∣
p̂+
k−1

+∆pk

Ck−1

1

]
// Covariance propagation

P̂−k = FkP̂
+
k−1F

T
k + Gk

[
Σ∆bk

σ2
∆θk

]
GT
k

End
Update

// Residual

rk = h
(
X̂−k
)
− yk

// Jacobian

Hk = ∂h(X)
∂X

∣∣∣
X̂+

k

// Kalman gain

Kk = P̂−k HT
k

(
HkP̂

−
k HT

k + Σyk

)−1

// IEKF Update
t̂+
k = t̂k + δtk

R
(
θ̂+
k

)
= Exp (δθk ) R

(
θ̂k
)

P̂+
k = (I−KkHk) P̂−k

End
Output: X̂k, P̂k

RMSE =

√∑N
i=1 e

2
ik

N
(18)

ANEES =
1

Nm

N∑
i=1

eTikP
−1
ik

eik (19)

where eik and Pik are respectively the estimation error and
the error covariance for the i-th run at a given time step k.

The RMSE gives an indication of how far the esti-
mate varies from the ground truth on average, whereas the
ANEES, which is normalized by the covariance of the filter

Fig. 5. Ground-truth (in black) and estimated trajectory (in red) of the
M-IEKF on a cylindrical surface. Note the wrong initialization of the filter.

Fig. 6. M-IEKF full state RMSE and ANEES averaged over 100 runs
corresponding to the estimation problem on the cylindrical surface.

at each time step, gives a standard for whether a filter is a
credible estimator. The closer to 1 an estimator is within the
probability interval, the more credible it is, and therefore the
more consistency the filter has [20] [21].

B. Results
Fig. 5 and 6 show the trajectory and the error metrics

respectively for the M-IEKF during the cylinder manifold
simulation. The trajectory plot shows that the state estimate
follows closely with the ground truth which is also cor-
roborated by the error metrics. The RMSE for the heading
is mostly below 0.01 rad, and the RMSE for its position
are predominantly below 10 cm in each dimension giving
a good indication that the filter can perform accurately.
Furthermore, the ANEES is almost completely confined to
the probability interval, and it is centered about 1 indicating
that the filter is credible and consistent. To further evaluate
the filter, Fig. 7 and 9 show the trajectory and the error
metrics respectively for the M-IEKF and the MC-EKF during
the ship hull simulation. The trajectory plot shows that the



Fig. 7. Ground-truth (in black) and estimated trajectory of the M-IEKF
and the MC-EKF (respectively in red and blue) on a b-spline interpolated
surface corresponding to the curved surface of a ship hull.

state estimate of the M-IEKF follows closely with the ground
truth like it did in the cylinder experiment, whereas the MC-
EKF clearly starts diverging. The error metrics show that
the M-IEKF still performs consistently and accurately, but
with a little bit more error in comparison with the error in
the cylinder simulation which was expected considering that
its state is being estimated on an interpolated surface this
time. By contrast, the MC-EKF shows significantly higher
error in the RMSE for its position up to 50 cm in some
instances in the x direction, and the ANEES plot clearly
shows that it goes outside of the probability interval and is
therefore not consistent. Fig. 8 shows the trajectory from
the real experiment on the curved metal plate for each filter
along with the UWB measurements, and Fig. 10 shows
the position RMSE for each filter. The M-IEKF follows
quite closely to the ground truth, only having noticeable
error when there is a high concentration of erroneous UWB
measurements due to the metal surface deflection which can
be seen near time step 625. The MC-EKF does not follow
closely to the ground truth as expected with errors up to
80 cm. The results back up the fact that the M-IEKF is
consistent and more accurate than standard approaches like
the MC-EKF, allowing further extensions like the inclusion
of a measurement update rejection test, making it a viable
option for consistent and robust metal structure inspection
with ultra-wideband localization.

VI. CONCLUSION

The Manifold Invariant Extended Kalman Filter is a novel
approach for consistent state estimation on manifolds. It
combines manifold state representation and invariance to
achieve greater consistency and accuracy. We proved that the
proposed M-IEKF is applicable to a wide range of vessel
surfaces encountered in real world applications. Further,
we showed results validating that the M-IEKF outperforms
classical approaches when using real robot wheel odometry
and UWB measurements. Therefore, the M-IEKF makes
metal structure inspection with ultra-wideband localization
viable.

Fig. 8. Ground-truth of the magnetic crawler robot (in black) and estimated
trajectory of the M-IEKF and the MC-EKF (respectively in red and blue).
Dots (in green) correspond to the position measurements from the UWB
trilateration. Note the cyan circle showing the failure of the MC-EKF on
providing an estimate that is not attached to the surface.

Fig. 9. Comparison between MC-EKF and M-IEK in terms of position
RMSE and ANEES corresponding to the case of b-spline interpolated
surface.

Fig. 10. Position RMSE of the M-IEKF and MC-EKF (in red and blue
respectively) corresponding to the real magnetic crawler robot experiment.
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