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Executive summary 
 
Deliverable D4.2 focuses on the mapping functionalities running on the BUGWRIGHT2 (BW2) platforms 
that require representations of the immediate surroundings for their operation, i.e. local maps, being the 
typical use obstacle representation and motion planning for collision avoidance, though other uses also 
take place, e.g. motion estimation.  

 Introduction 
 
The project BW2 aims at the development of several robotic platforms oriented to making (ship) 
inspections easier and faster for the inspection crew. To this end, the robots need a suitable control 
architecture to solve the respective operating cases with the required level of autonomy. Among others, 
the control architecture may need representations of the environment at different levels to achieve the 
intended goals. These representations can be regarded as containers where the corresponding platform 
stores processed data collected by means of the onboard sensors as well as possibly updates in accordance 
to new findings.  

Deliverable D4.2 focuses on the mapping functionalities running on the BW2 platforms that make use of 
representations of the immediate surroundings during their operation, i.e. local maps, being the typical 
use that of obstacle representation and motion planning for collision avoidance, though other uses can 
also take place, as described along the following sections. 

Deliverables D4.1 – Localisation (already released), D5.1 – Unified Control Interfaces (already released), 
D5.2 – Autonomous Trajectory Tracking and Obstacle Avoidance (due M39) and D5.3 – Single-Robot 
Planning, Coverage and Mission Execution (due M45) describe complementary aspects of the control 
architectures of the respective BW2 platforms. Consequently, a certain level of overlap can be expected 
between the contents of the aforementioned deliverables and this document, as a result of trying to make 
every deliverable a reasonably self-contained report.  

The rest of this document is organised as follows: Section II is devoted to the aerial inspection drone, where 
Section II.1 overviews very briefly the control architecture where the aforementioned local mapping 
functionalities reside, Section II.2 describes local mapping oriented to LiDAR-based motion estimation, and 
Section II.3 refers to local maps for obstacle representation and collision prevention; Section III deals with 
local mapping and depth perception issues as solved by the underwater inspection drone, reviewing the 
sensor suite in Section III.1 and the perception-related functionalities in Sections III.2 and III.3; Section IV 
is for the inspection crawler, detailing obstacle perception in Sections IV.1 and IV.2, and mapping in 
Sections IV.3 and IV.4; finally, Section V summarises and concludes deliverable D4.2. 
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 Local Mapping and Obstacle Perception in 
the Aerial Inspection Drone 
 
This section describes local mapping functionalities that are available in the control architecture of the UIB 
aerial inspection drone. These functionalities serve to different purposes but share the feature of building 
local representations of the surrounding environment in order to produce the corresponding estimations. 
On the one hand, local maps are built for platform motion estimation on the basis of the laser scans 
supplied by a 3D LiDAR. On the other hand, the same sensor supplies information on the surrounding 
obstacles, which have to be perceived in order to be able to navigate safely throughout the environment. 

In order to situate correctly these two functionalities in the control software of the platform, the vehicle 
control architecture is briefly overviewed in the next section, to describe in the posterior sections the 
processes of building the respective local maps involved in motion estimation and obstacle perception. 

 Brief overview of the sensor suite and the control architecture 
 
Figure 1 shows the control architecture of the aerial inspection drone assimilated to a hierarchical layered 
structure, where each layer implements a different level of control. Moreover, mid- and high-level control 
layers run different robot behaviours that contribute to the generation of the final motion control 
command. In more detail:  

• The low-level control layer comprises attitude and thrust control, as well as the behaviours that 
check the viability of the flight. We make use of the DJI FMU services, through the DJI SDK, to make 
available this functionality. 

• The mid-level control layer accommodates safety-oriented control by including the safety 
manager module, which comprises several robot behaviours that combine the user desired speed 
command with the available sensor data to obtain final and safe speed and height set-points that 
are sent to, respectively, the horizontal speed and height controllers. 

• At the highest level of the hierarchy, the application-oriented control layer allows the execution 
of predefined missions by means of the mission manager module, which is in charge of executing 
higher autonomy behaviours that implement missions defined as a set of way-points to attain. The 
corresponding motion commands are generated in sequence and issued to the corresponding 
position controller, while monitoring way-point achievement and overall correct mission 
execution. 
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Figure 1: Control software of the aerial inspection drone shown as a layered architecture. 

As shown in Figure 1, a state estimation module is transverse to all layers. This module is in charge of 
processing and fusing all the sensor data available on-board, to estimate with enough accuracy the 
platform state. The state estimate is employed in all control layers, as could be expected. 

Given the nature of the missions handled by the mission manager, defined in terms of sets of way-points 
to be achieved, the platform state comprises the platform pose (𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝜑𝜑,𝜃𝜃,ψ), the linear velocities 
(�̇�𝑥, �̇�𝑦, �̇�𝑧) and accelerations (�̈�𝑥, �̈�𝑦, �̈�𝑧), and the angular velocities �φ̇, �̇�𝜃, ψ̇�. The full state estimator (FSE) 
module shown in Figure 2 supplies these state estimates by fusing the available navigation data (once 
processed) and a number of different positioning sources. More precisely, the FSE module comprises two 
cascaded Extended Kalman Filters (EKF): the local EKF fuses navigation data from motion and relative-
position sources, while the global EKF combines estimates from the local EKF with positioning data from 
global localisation sources such as GPS and/or UWB-based position estimators, as well as from SLAM 
algorithms (whichever are available) fed by the on-board sensors. 

 

Figure 2: Full-state estimator module (aerial inspection drone). 

In its current configuration, the sensor suite of the aerial inspection drone comprises (see Figure 3, and 
deliverable D2.3 – MAV adaptation to BUGWRIGHT2’s requirements): 

• A 3D laser scanner from Ouster, model Ouster OS1-64 Gen 2, which supplies structured 3D point 
clouds organised into 64 channels, with 2048 bins per channel (maximum), able to operate at 10 
or 20 Hz. The maximum range is 100 m, for a Field of View (FOV) of +22.5° to -22.5° (vertical) and 
360° (horizontal).  

• A downward-looking LIDAR-Lite v3 single-beam laser range finder used to supply height data for 
a maximum range of 40 meters. This sensor is complemented with a barometric pressure sensor 
that is included in the Flight Management Unit (FMU) of the drone. 
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• (optionally) An upward-looking TeraRanger Evo 60m Time-of-Flight (ToF) infrared range finder to 
supply the distance to the ceiling up to a maximum range of 60 meters. 

• An imaging system which can interchangeably consist of an RGB-D or a lighter RGB camera 
(Figure 3 shows the configuration including an RGB-D camera from Intel, model Intel Realsense 
D435i, which also integrates a 6 DOF IMU). 

• An Ultra-Wide Band (UWB) receiver/tag, used as part of a UWB-based global localisation system. 
• GNSS and RTK GNSS receivers. 

In addition to motion estimation, the 3D structured point cloud provided by the 3D laser scanner is used 
within the control architecture to prevent collisions with surrounding obstacles, while attenuating the 
speed of the platform based on the proximity to them. From the mapping perspective, both procedures 
include building a representation of the local environment of the platform. More details are given in the 
following sections. 

 
Figure 3: Picture of the aerial inspection drone, 

with indication of the main hardware components that support the control architecture. 

 Local mapping for motion estimation 
 
LiODOM (LiDAR-only ODOMetry) is a laser-based motion estimation module developed within the 
framework of project BW2 by the UIB. Currently, it is the odometry source that feeds the local EKF of the 
full state estimator of the aerial inspection drone (Figure 2). As already said, in the current configuration 
of the drone, the input for LiODOM comes from an Ouster OS1-64 3D laser scanner, although it is 
independent of the sensor. LiODOM works naturally with structured point clouds, as the ones provided by 
the Ouster LiDAR; in case the input sensor is not of this class, a specific module to transform from 
unstructured to structured point clouds must be employed. Next sections provide relevant data about the 
local mapping functionalities. 

 

LiDAR odometry 

Figure 4 illustrates LiODOM. As its name suggests, LiODOM can compute the pose of the platform without 
the help of any other sensor, such as IMU, GPS, etc. It is fundamentally organised into two main 
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components, odometry and mapping, which are executed in parallel during task execution. The mapping 
module, which is the fundamental topic covered in this deliverable, builds an unoptimised global 
representation of the environment Mi i.e. loop closures are not detected nor considered. From this global 
map, a local representation 𝑚𝑚𝑖𝑖 is extracted according to the current pose of the platform. This local map is 
further used to find correspondences with the current point cloud in the next estimation stage. Each of 
these components is detailed next. 

The odometry module is further divided into two synchronised threads to decouple the feature extraction 
from the pose estimation. In the feature extraction stage, the received sweep 𝑆𝑆𝑖𝑖 at time step i is divided 
into its different scans but discarding points which do not fall within an interval [𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚]. Next, a set of 
edge features 𝐸𝐸𝑖𝑖𝐿𝐿 (as defined in LOAM1) are detected and selected in accordance to the local curvature 
within the input point cloud. Each scan is additionally split into sectors and a maximum number of points 
per sector is chosen to ensure an even distribution of point data throughout the environment for better 
optimisation conditioning. 

 

 

Figure 4: Overview of LiODOM. 

The resulting edges are then processed by the pose estimation thread. Each edge 𝑝𝑝𝑗𝑗
𝐿𝐿𝑖𝑖  in the LiDAR 

coordinate frame L is transformed into world coordinates as 𝑝𝑝𝑗𝑗𝑊𝑊 = 𝑇𝑇𝐿𝐿𝑖𝑖
𝑊𝑊𝑝𝑝𝑗𝑗

𝐿𝐿𝑖𝑖, being 𝑇𝑇𝐿𝐿𝑖𝑖
𝑊𝑊 the transformation 

from LiDAR to world at time 𝑡𝑡𝑖𝑖. A constant velocity motion model is initially assumed for this 
transformation.  

Despite LiODOM is able to provide an estimation of the pose using only LiDAR data, at this point we can 
take advantage of the IMU and the height estimated by the FSE to enrich the initial guess on the platform 
motion. Next, a set of point-to-line correspondences are established between each point 𝑝𝑝𝑗𝑗𝑊𝑊 and a local 

map 𝑚𝑚𝑖𝑖. The latter is built by the mapping module, which is described later.  

Let us now denote the set N�𝑝𝑝𝑗𝑗𝑊𝑊� as the 𝑘𝑘-th nearest points in the local map of the point 𝑝𝑝𝑗𝑗𝑊𝑊 and 𝑁𝑁𝑚𝑚�𝑝𝑝𝑗𝑗𝑊𝑊� 

as the 𝑛𝑛-th nearest neighbour. We first check whether N�𝑝𝑝𝑗𝑗𝑊𝑊� really conforms a line and, if this is the case, 

we compute the point to line distance from 𝑝𝑝𝑗𝑗𝑊𝑊 to the line 𝑙𝑙�𝑝𝑝𝑗𝑗𝑊𝑊�, resulting from 𝑁𝑁1�𝑝𝑝𝑗𝑗𝑊𝑊� and 𝑁𝑁2�𝑝𝑝𝑗𝑗𝑊𝑊�, as: 

𝑑𝑑𝑒𝑒 �𝑝𝑝𝑗𝑗𝑊𝑊, 𝑙𝑙�𝑝𝑝𝑗𝑗𝑊𝑊�� =
| �𝑝𝑝𝑗𝑗𝑊𝑊 − 𝑁𝑁1�𝑝𝑝𝑗𝑗𝑊𝑊�� × 𝑁𝑁12 |

| 𝑁𝑁12 |
 , 

 
1 Ji Zhang and Sanjiv Singh, LOAM: Lidar Odometry and Mapping in Real-time, in Proc. Robotics : Science and 
Systems Conference (RSS), 2014  
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with 𝑁𝑁12 = 𝑁𝑁1�𝑝𝑝𝑗𝑗𝑊𝑊� − 𝑁𝑁2�𝑝𝑝𝑗𝑗𝑊𝑊�. Next, the optimal pose of the LiDAR 𝑇𝑇𝐿𝐿𝑖𝑖
𝑊𝑊 is computed by means of non-

linear optimisation. To this end, each valid correspondence provides a constraint whose residual is defined 
as: 

ϱ𝑒𝑒 �𝑝𝑝𝑗𝑗𝑊𝑊, 𝑙𝑙�𝑝𝑝𝑗𝑗𝑊𝑊�� = ω𝑗𝑗 𝑑𝑑𝑒𝑒 �𝑝𝑝𝑗𝑗𝑊𝑊, 𝑙𝑙�𝑝𝑝𝑗𝑗𝑊𝑊�� , 

where ω𝑗𝑗 is a weighting term defined by: 

ω𝑗𝑗 = 1 −
𝑟𝑟𝑗𝑗 − 𝑟𝑟min

𝑟𝑟max − 𝑟𝑟min
 , 

being 𝑟𝑟𝑗𝑗 the range returned by the LiDAR for edge 𝑝𝑝𝑗𝑗
𝐿𝐿𝑖𝑖. Then, the optimal pose is computed by minimising 

the loss function 𝐽𝐽 �𝑇𝑇𝐿𝐿𝚤𝚤
 𝑊𝑊� ,Υ�: 

J �𝑇𝑇𝐿𝐿𝚤𝚤
 𝑊𝑊� ,Υ� =

1
2
�ρ�||ϱ𝑒𝑒 �𝑇𝑇𝐿𝐿𝚤𝚤

𝑊𝑊� 𝑝𝑝𝑗𝑗
𝐿𝐿𝑖𝑖 , 𝑙𝑙 �𝑇𝑇𝐿𝐿𝚤𝚤

𝑊𝑊� 𝑝𝑝𝑗𝑗
𝐿𝐿𝑖𝑖�� ||2�

𝑗𝑗∈Υ

 , 

and, hence, the optimal pose can be stated as: 

𝑇𝑇𝐿𝐿𝑖𝑖
𝑊𝑊 = 𝑚𝑚𝑚𝑚𝑛𝑛

𝑇𝑇𝐿𝐿𝚤𝚤
 𝑊𝑊�
𝐽𝐽 �𝑇𝑇𝐿𝐿𝚤𝚤

 𝑊𝑊� ,Υ� , 

where Υ is the set of correspondences established between the detected edges and the local map, and ρ 
is a Huber loss function. 

The registration of the extracted edges 𝐸𝐸𝑖𝑖𝐿𝐿 on the global map 𝑀𝑀𝑖𝑖 is performed by the mapping module using 
the last optimised pose 𝑇𝑇𝐿𝐿𝑖𝑖

𝑊𝑊. This module also generates the corresponding local map 𝑚𝑚𝑖𝑖. Figure 5 shows 

an example of the maps resulting from LiODOM. 

 

Figure 5: Example of map produced by LiODOM (for the KITTI 05 sequence), comprising an unoptimised global map generated during 
navigation (in white) and a local map (in red) that is retrieved according to the position of the vehicle, to be used for next pose estimation 

optimisation. 
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Map Representation 

Given the high frequency at which the map must be accessed, the type of data structure chosen to 
represent 3D space becomes crucial for fast operation. A single KD-tree has been typically used to this end. 
However, this option presents several drawbacks: on the one hand, the full tree tends to change as points 
are added or deleted to/from the tree, and, on the other hand, the KD-tree performance decreases as more 
points need to be managed. To overcome these issues, in LiODOM we introduce an efficient hashing data 
structure for representing the map, taking inspiration from other recent works. To be more specific, the 
3D space is partitioned into a set of disjoint cuboids of fixed size that we name cells. A cell 𝐶𝐶𝑗𝑗 is represented 

by its geometric center, denoted by (𝑐𝑐𝑗𝑗𝑚𝑚, 𝑐𝑐𝑗𝑗𝑗𝑗, 𝑐𝑐𝑗𝑗𝑗𝑗), and includes all 3D points whose coordinates fall into its 

limits. Examples of cells and points can be found in Figure 6. We define a map at time 𝑡𝑡𝑖𝑖  as 𝑀𝑀𝑖𝑖 = {𝐻𝐻𝑖𝑖 ,𝐶𝐶𝑖𝑖}, 
where 𝐻𝐻𝑖𝑖  is a hash table and 𝐶𝐶𝑖𝑖  is the set of existing cells up to time 𝑡𝑡𝑖𝑖. Table 𝐻𝐻𝑖𝑖  allows us to rapidly get 
access to a specific cell 𝐶𝐶𝑗𝑗 using a hash function based on its coordinates, being defined by: 

H�Cj� = �cjx ⊕ �cjy ≪ 1�� ⊕ �cjz ≪ 2� , 

where ⊕ and ≪ are, respectively, the bitwise XOR and the left shift operators. This function has been 
selected in order to minimise, as much as possible, hash collisions. That is to say, if bits of a binary word 
have roughly 50% chance of being 0 or 1, i.e. as randomly distributed as possible, the bitwise XOR between 
such binary words results into another word also following a random distribution. Furthermore, since the 
bitwise XOR is a symmetric operation, the order of the elements in the hash code is lost. To break this 
symmetry, we use the shift operator, at a limited computational cost. 

 

Figure 6: Example of cells and points produced by LiODOM (for the KITTI 05 sequence). 

 
Map Updates 

In LiODOM, map updates are performed once per sweep, being the input data the set of edges 𝐸𝐸𝑖𝑖𝐿𝐿 extracted 
from 𝑆𝑆𝑖𝑖 and the last optimised transformation 𝑇𝑇𝐿𝐿𝑖𝑖

𝑊𝑊. Unlike other approaches, where the raw point cloud is 

used for mapping, in our approach, the map is built using directly the edges to speed up the mapping 

procedure, resulting into more sparse maps. Initially, every point 𝑝𝑝𝑗𝑗
𝐿𝐿𝑖𝑖 ∈ 𝐸𝐸𝑖𝑖𝐿𝐿 is transformed into world 
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coordinates. Next, for each point 𝑝𝑝𝑗𝑗𝑊𝑊 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧), we compute the geometric center of the cell 𝐶𝐶𝑞𝑞 in which 

the point should be stored as: 

�
Cqx
Cqy
Cqz

� =

⎣
⎢
⎢
⎢
⎢
⎡�𝑥𝑥/𝑠𝑠𝑚𝑚𝑗𝑗�𝑠𝑠𝑚𝑚𝑗𝑗 +

1
2
𝑠𝑠𝑚𝑚𝑗𝑗

�𝑦𝑦/𝑠𝑠𝑚𝑚𝑗𝑗�𝑠𝑠𝑚𝑚𝑗𝑗 +
1
2
𝑠𝑠𝑚𝑚𝑗𝑗

⌊𝑧𝑧/𝑠𝑠𝑗𝑗⌋𝑠𝑠𝑗𝑗 +
1
2
𝑠𝑠𝑗𝑗 ⎦

⎥
⎥
⎥
⎥
⎤

 

where 𝑠𝑠𝑚𝑚𝑗𝑗 and 𝑠𝑠𝑗𝑗 are the metric cell sizes for the corresponding dimension. We next check if the cell 𝐶𝐶𝑞𝑞 is 

already in the map by querying the hash table 𝐻𝐻 using the key 𝐻𝐻�𝐶𝐶𝑞𝑞�. If this is the case, the point is added 

to the existing cell. Otherwise, a new cell 𝐶𝐶𝑚𝑚 is created with point 𝑝𝑝𝑗𝑗𝑊𝑊 as seed, to be added next to 𝐶𝐶 and 

indexed on 𝐻𝐻 by 𝐻𝐻(𝐶𝐶𝑚𝑚).  

Finally, modified cells exceeding a certain number of points are filtered using a 3D voxel grid approach. 
Note that our data structure allows us to rapidly update just the required areas of the environment, 
avoiding the update of the whole map at each iteration. This fact contributes to speeding up the mapping 
procedure. 

 
Adaptive Local Map Computation 

Lastly, the mapping module generates a local map 𝑚𝑚𝑖𝑖, which contains the points of 𝑀𝑀𝑖𝑖 within a certain 
range from the current LiDAR pose. Assuming a moderate motion between two consecutive sweeps, these 
points are enough to find correspondences for the next pose estimation step. To build the local map, we 
first retrieve the cell 𝐶𝐶𝐿𝐿𝑖𝑖  where the LiDAR is located at that moment using its current position 𝑇𝑇𝐿𝐿𝑖𝑖

𝑊𝑊. Next, 

assuming a 3D grid arranged over 𝑀𝑀𝑖𝑖, neighbouring cells of 𝐶𝐶𝐿𝐿𝑖𝑖  up to a certain distance are further retrieved 

from 𝑀𝑀𝑖𝑖, and their corresponding points are merged to form the local map 𝑚𝑚𝑖𝑖. This operation results to be 
very fast due to the proposed hashing structure. Points on 𝑚𝑚𝑖𝑖 are finally organised into a KD-tree to speed 
up nearest neighbour search. Note that this tree is very simple, as it just contains a small subset of the total 
map points, in contrast to managing the whole global map. 

On the other side, we refer to this local map as adaptive since it always covers a specific area of the 
environment, contrary to a local map built by aggregation of a sliding window. Besides, it provides us with 
correspondences with revisited areas of the environment in a natural way. Additionally, the availability of 
𝑚𝑚𝑖𝑖 avoids us to search for correspondences against the whole map, as done by other solutions. Finally, to 
avoid reduced amounts of points from unexplored areas, we always add the last three sweeps to 𝑚𝑚𝑖𝑖. 

 

 Local mapping for obstacle perception  
 
As already mentioned, inside the aerial inspection drone, the LiDAR sensor is also used for perceiving the 
environment and preventing collisions with the surrounding obstacles. To be precise, the collision 
prevention mechanism makes use of the 3D point-cloud in two different ways: 
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• On the one hand, the user’s desired speed is attenuated towards zero when the platform 
approaches an obstacle. The closer the obstacle, the greater the attenuation, so that the user’s 
desired speed is completely attenuated when the platform is very close to the obstacle. 

• On the other hand, all obstacles surrounding the platform create a repulsion vector for the vehicle 
to move away from them. The closer the obstacle is, the greater the repulsion vector that is 
generated. Once all the vectors have been calculated (for all surrounding obstacles) they are added 
together to obtain a single repulsion vector/velocity. 

Two distances are involved in the collision prevention mechanism: the attenuation distance 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎 and the 
minimum distance allowed to obstacles 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚, where 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎 > 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚. Given these two distances and 
considering a single obstacle situated at a distance 𝑑𝑑𝑜𝑜 from the aerial platform, three different situations 
may arise: 

1. 𝑑𝑑𝑜𝑜 > 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎: the obstacle is not deemed a threat for the platform and hence it is not considered by 
the collision prevention mechanism. 

2. 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑑𝑑𝑜𝑜 < 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎: the obstacle is not used to create a repulsion vector to move the aerial platform 
away from it, but 𝑑𝑑𝑜𝑜 is used to attenuate the user’s desired speed in the case this points towards 
the obstacle. As a result, the platform can still approach the obstacle, but with decreasing speed. 

3. 𝑑𝑑𝑜𝑜 < 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚: the vehicle is too close to the obstacle so that 𝑑𝑑𝑜𝑜 is used to create a repulsion vector 
to move the platform away. The user’s desired speed is fully attenuated (i.e., it becomes 0) in the 
case this points towards the obstacle. 

 

Figure 7: Distances involved in the collision prevention mechanism (aerial inspection drone). 

Figure 7 shows the three situations depending on where the aerial platform is situated with regard to the 
two distance parameters. In the following, we detail the velocity attenuation and repulsion mechanisms. 

Velocity attenuation 

For a given user’s desired velocity 𝑣𝑣𝑣𝑣𝑙𝑙𝑢𝑢𝑢𝑢 to move the vehicle towards an obstacle situated at distance 𝑑𝑑𝑜𝑜, 
the velocity is attenuated by a factor 𝜆𝜆 ∈  [0, 1] which is computed as: 

λ = 𝑚𝑚𝑚𝑚𝑛𝑛�1.0,𝑚𝑚𝑚𝑚𝑥𝑥 �0.0, �
𝑑𝑑𝑜𝑜 − 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚

𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚
��� 

so that the attenuated desired velocity results into: 

𝑣𝑣𝑣𝑣𝑙𝑙𝑚𝑚𝑎𝑎𝑎𝑎 = λ ∙ 𝑣𝑣𝑣𝑣𝑙𝑙𝑢𝑢𝑢𝑢  
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Notice that if there is no obstacle in the direction of the desired velocity, or this is farther than 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎, the 
desired velocity is not attenuated. 

The distance 𝑑𝑑𝑜𝑜 is computed considering all the points of the point cloud situated within a pyramidal 
frustum oriented in the direction of the user's desired speed (see Figure 8). The FOV of the frustum is 45∘ 
in both the vertical and horizontal directions, with the near and far planes situated at, respectively, a 
distance equal to the robot radius 𝑑𝑑𝑟𝑟  and at a distance 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎 >  𝑑𝑑𝑟𝑟. Then, 𝑑𝑑𝑜𝑜 is calculated as the minimum 
of the distances to the points within the frustum (in red in Figure 8). 

 

Figure 8: Frustum used to select the points involved in the attenuation of the user's desired velocity (aerial inspection drone). 

 

 

Figure 9: Illustration of the computation of the repulsion vector (aerial inspection drone). 

 

Calculation of the repulsion vector 

A repulsion speed vector 𝑟𝑟𝑣𝑣𝑝𝑝𝑝𝑝 is created for each 3D point 𝑝𝑝 within the point cloud and situated at a 

distance 𝑑𝑑𝑝𝑝 < 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 (see Figure 9). The magnitude of the repulsion vector is then computed as: 

�𝑟𝑟𝑣𝑣𝑝𝑝𝑝𝑝� = 𝐾𝐾 ∙ �𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑑𝑑𝑝𝑝� 

where 𝐾𝐾 is the repulsion factor and the direction of the resulting vector is pointing away from 𝑝𝑝. The final 
repulsion vector 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑒𝑒𝑝𝑝 is computed as the mean of all the repulsion vectors defined for each point 

separately. In addition, the magnitude of 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑒𝑒𝑝𝑝 is limited to the maximum speed allowed. 

Considering both the velocity attenuation and the repulsion mechanisms, the final velocity command 
results: 

𝑣𝑣𝑣𝑣𝑙𝑙𝑐𝑐𝑚𝑚𝑢𝑢 = 𝑣𝑣𝑣𝑣𝑙𝑙𝑚𝑚𝑎𝑎𝑎𝑎 + 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑒𝑒𝑝𝑝  
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 Local Mapping and Obstacle Perception for 
the Underwater Inspection Drone 
 
In this section, we describe the methods developed for local mapping and obstacle/depth perception for 
the underwater platform under development in BW2. As already described in deliverable D2.2 – AUV 
adaptation to BUGWRIGHT2’s requirements, the underwater vehicle developed jointly by Blueye, NTNU 
and UPORTO is based on the Blueye X3 ROV, with contributions from UNI-KLU on the platform localisation 
side and hence also on mapping. In the following, Section III.1 revises the platform setup, while Section III.2 
describes the process related to the generation of a local map used to represent the progress during the 
inspection of the submerged part of a vessel hull, and Section III.3 deals with feature scale perception. 

 

 Setup overview 
 
In the X3 small ROV, the default integrated sensor payload consists of two Inertial Measurement Units 
(IMUs), a pressure sensor providing depth measurements, and a camera inside a glass dome with (approx.) 
48° degrees vertical FOV and (approx.) 77° horizontal FOV. Additionally, three external sensors are 
connected to the vehicle's guest ports: a GPS on a stick for synchronisation with the global navigation 
frame, a forward-looking multibeam sonar (FL-MBS), and a DVL oriented towards the sea-bottom to 
measure the speed over ground in the vehicle's frame. The FL-MBS has 130° horizontal and 20° vertical 
apertures, features a configurable sight distance, and points in the same direction as the camera, with a 
slight vertical offset. The footprints of the camera and the forward-looking sonar are depicted in Figure 10, 
with the Blueye ROV facing a simulated ship hull.  

An additional, lower-cost obstacle perception sensor setup has been under investigation from the side of 
UPORTO, apart from the aforementioned setup based on the FL-MBS. This setup adopts a triangulation-
based visual approach and comprises two laser pointers combined with an imaging sensor.  

The ROV is actuated in surge, sway, heave, and yaw. The localisation, guidance, and control algorithms all 
run fully onboard the vehicle, whereas the optical imagery and the sonar data are processed at the surface, 
within an external computer due to the limited computational capacity onboard the vehicle. The operator 
has the possibility to interact with the vehicle for safety reasons based on the online data feed and to 
provide high-level input. 

 

 Multibeam sonar-based generation of inspection maps 
 
To keep track of the inspection progress during the operation, an inspection map is built online. Using sonar 
and navigation data, everything seen by the vehicle is registered with position, and point clouds are 
established to form an occupancy map. The map contains local uncertainty information that the operator 
can use to assess the reliability of the inspection. Automatic detection of coverage holes is added to allow 
the autonomous system to find them and (re)inspect the area. The map is referred here as inspection map 
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because it is solely used for the drone to keep track of the mission and not for any other tasks such as the 
reconstruction of the ship hull, which is an independent task. 

Using the assumption that the surface in front of the ROV has a flat shape, the closest detected feature for 
each sonar beam provides a set of information about the surroundings that allows the creation of the 
inspection map. Therefore, to build the inspection map, features are detected for each sonar scan. An 
example is displayed in Figure 11, with the detected features highlighted as green dots. 

However, before building the map, the sonar features must be filtered for noise and outliers. To achieve 
this, a method based on averaged point distances is proposed. It measures the average distance between 
the surrounding points in a window for each point at a time. For objects that are present, the corresponding 
feature points of consecutive beams are expected to be close to each other. The window size s selects a 
total of s+1 consecutive beams, with half of s beams before and half of s beams after the focus point. The 
average distance value for a point is then calculated to have a better understanding of its neighbourhood. 

This method is more robust and less prone to true positive rejection compared to methods such as bin-
based evaluations using the direct sonar distances to the points. However, a cluster of noisy points will 
anyway create a local bias and might increase rejection of true positives in that area. The rejection of the 
points is then based on a threshold test. 

Over time, points for the sonar scans accumulate and create a dense point cloud and enables the creation 
of the voxel map. A voxel is created only if there are enough reliable points inside the area related to the 
voxel. To assess and validate the proposed methods, full-scale ship hulls have been mapped. An 
approximately 30 x 5 m² section of a ship was autonomously inspected twice using different inspection 
patterns. The first survey contains horizontal slices taken at 1 m distance to the hull. The second survey 
contains vertical slices for a 1.3 m distance to the hull. In both cases, the inspection starts at the water 
surface and ends at the keel. The results of experiments on full-scale ship can be found in Figure 12. 

 

 Front-plane depth and scale perception 
 
A lower-cost sensor setup comprising two laser pointers and an imaging sensor is used to provide the 
operator with depth data regarding the (locally) planar surface in front of the robot, as well as scale 
perception, as shown in Figure 13. With the aforementioned setup, depth and scale can be calculated by 
processing the camera frames after locating the laser dots reflections and triangulating them using the 
camera-laser pointers intrinsics.  

All this allows obstacle detection and automatic hull distance. Additionally, because of the tilt actuator on 
the camera, we can adjust its tilt using the pitch calculated relative to the hull, to be applied where the hull 
curvature is more pronounced. This information can be overlayed onto the video feed to provide the 
operator with features scale/size perception directly onto the camera image (Figure 13). This development 
adds to the data the FL-MBS provides. 
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Figure 10: Underwater inspection drone sensor footprints on a simulated hull. 

 

 

Figure 11: Features detected in a sonar scan (underwater inspection drone). 
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Figure 12: Inspection maps represented as a voxel map (underwater inspection drone). 

 

 

Figure 13: Perception of feature size by means of the laser-camera setup (underwater inspection drone). 
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 Local Mapping and Obstacle Perception for 
the Inspection Crawler 
 
In this section, we present the crawler’s approach to the mapping problem (with CNRS, Roboplanet and 
UPORTO as partners involved), while taking into account contextual constraints such as obstacles, and the 
need to detect free space. Maps are important to robots, as long as they are useful for obstacle avoidance, 
path planning, or to constrain the attitude of the robotic system, among others. Maps become also 
important to human operators, as a way to provide visual feedback from the robot's perspective.  

The crawler is equipped with an RGB camera, a 3D LiDAR, and an IMU. In addition, optical sensors capture 
wheel odometry. Further, a Particle Filter (PF) is used for localisation purposes by fusing IMU data, UWB 
range measurements and wheel odometry data. The pose estimated by the PF is further referenced as the 
PF pose. To compensate for motion uncertainties (due to e.g. drift), pose correction is performed using a 
constrained version of ICP, discussed in more detail below. 

 

 Stop and map procedure 
 
The majority of filtering techniques, such as PFs, introduce time delays, namely between the filter 
estimates and the actual observations. In that sense, the generated estimate was found to satisfy control 
requirements for autonomous driving, though, nevertheless, mapping proved to be more challenging. To 
solve this problem, a stop and map approach was implemented in the autonomous planner, i.e. the robot 
task manager. 

 

Figure 14: Flow chart of the mapper running onboard the aerial crawler: grayed-out rectangles denote repeated behaviour. 

As shown in Figure 14, the mapper proposed is idle while the robot is moving and only captures data when 
the robot stops. Once static, the point clouds accumulate and the pose is captured. 
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The latter approach therefore does not suffer from data delays. The PF pose is then captured around half 
a second after the robot stops. Minimum stop time is set to 3 seconds, to allow the on-board laser scanner 
to accumulate sufficient points for data fitting. This is especially useful with 3D LiDARs equipped with a 
scanning unit, such as the Livox Mid-70 (see Deliverable D2.1 – Crawler adaptation to BUGWRIGHT2’s 
requirements for the sensor suite). A sample accumulated cloud can be seen in Figure 15. 

 

 Obstacle perception 
 
After we have the data from the stop and map process, the accumulated point cloud is voxelized, and 
processed through RANSAC, by fitting a second-degree manifold. The choice of a second-degree manifold 
is rooted in the application in which the mapper will be used: ship hulls and storage tanks using 
autonomous robots for inspection are often significant in size; as a result, non-flat surfaces have a 
significant radius. The curvature is therefore locally negligible, i.e. the surface around the current position 
of the robot can be represented as a plane. Nevertheless, a second-degree manifold captures better the 
surface geometry at unique places with an important curvature, such as at the tip of the ship structure. 

Finally, RANSAC inliers denote free, observable space that belongs to the detected manifold, while outliers 
denote positive obstacles such as protruding objects, and negative obstacles such as holes. 

 
(a)                                                                                                              (b) 

Figure 15: RGB vs Intensity map, showing the metal plates used to test the aerial crawler: (a) Accumulated intensity point cloud, 
taken from the Livox Mid-70 sensor, and (b) RGB camera feed. 

 

 Pose correction and ICP 
 
ICP (Iterative Closest Point) is an algorithm used to stitch overlapping point clouds. It works by iteratively 
finding the transformation that better aligns point cloud pairs. An ICP prior on the transformation to-be-
found improves the chances of converging to a valid solution. 
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Odometry-based PF still suffers from translational drift. To counteract that, ICP is used, in-between 
accumulated point clouds to reduce drift between successive stops. Nevertheless, ICP does not always 
properly converge on featureless surfaces. To overcome this issue, a constrained version of ICP is 
implemented. The purpose of these constraints is to prevent ICP from reducing the quality of the estimated 
PF pose when it does not properly converge. The list of constraints can be found in Table 1.  

Table 1 : List of ICP constraints (aerial crawler) 

Constraint type Value 
2D constraint  φ =  θ =  𝑍𝑍 =  0 
Maximum rotation norm  0.05 rad 
Maximum translation norm  0.35 m 
Minimum differential rotation error  0.01 rad 
Minimum differential translation error  0.01 rad 

 

After running few ICP iterations, and due to point cloud overlap, the density of points has to be 
standardised for both the newly accumulated point cloud and the previous ICP map. To that end, a density 
filter is applied to both inputs. Although the filter value depends on the point cloud density, the true 
purpose of it is to have the same density (value) for both inputs. The full list of values for the ICP parameters 
can be found in Table 2. 

Table 2: List of ICP parameters used for pose correction (aerial crawler) 

Parameter Mapper 
Matcher KD tree matcher 
Matcher KNN size 15 
Error minimiser Point to plane 
Maximum number of iterations 25 
Octree grid filter 0.01 
Maximum input point density 400000 
Maximum ICP map point density 400000 

 

Finally, the map pose is corrected according to 𝑃𝑃𝑚𝑚𝑒𝑒𝑛𝑛 = 𝑃𝑃𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑃𝑃𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
−1 𝑃𝑃𝑐𝑐𝑛𝑛𝑝𝑝𝑛𝑛𝐶𝐶, where 𝐶𝐶 is the ICP correction, 

inferred by matching the current accumulated cloud to the previously accumulated point cloud, 𝑃𝑃𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝 is 

the current pose in the reference frame of the map, 𝑃𝑃𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝  is the previously captured PF pose when the 

robot was still static, and 𝑃𝑃𝑐𝑐𝑛𝑛𝑝𝑝𝑛𝑛 is the most recently captured pose, with the robot also being static. 

 

 From point clouds to texture maps 
 
Up to this point, the proposed framework still lacks a high-level visual component, to be used by the system 
operator for visual feedback, manual driving, and debugging a possible snag. So far, point clouds have 
proven to be versatile data containers, and they are the precursors to creating maps. Nevertheless, there 
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is a need for a representation that is finite in space, and intelligible for people who are not point cloud 
experts. To that end, a multi-layer texture map was conceived.  

The generated texture is a projection of the RGB image on the robot surface. In the latter context, we will 
assume that the ground is flat. Ground pixels are now projected onto the camera frame, for color 
extraction. To do so, we will use the pinhole model: 𝑝𝑝 = 𝐴𝐴[𝑅𝑅|𝑡𝑡]𝑃𝑃𝑔𝑔 where 𝑃𝑃𝑔𝑔 is a 3D ground point, [𝑅𝑅|𝑡𝑡] is 

the extrinsic matrix that provides the geometric connection between the LiDAR and camera frames, and 𝐴𝐴 
is the camera intrinsic matrix, obtained by checkerboard calibration. Finally, the colors of ground points Pg 

are inferred by copying the colors of the nearest pixel after projection, i.e., those of p(u, v, 1). 

We have now projected the RGB image onto the ground surrounding the robot. What follows is the fusion 
of relevant semantic information, such as free spaces and obstacles, extracted from point cloud data. As 
such, pixels not seen by the LiDAR, i.e. unobservable space, will be marked in black, pixels belonging to 
obstacles will be marked in red, and free space will keep the original RGB colors. The texture map has 3 
layers: (a) a bottom layer, consisting of a dynamically updated projection of the ground portion of the 
image, drawn at the estimated pose; (b) a middle layer, that overwrites the bottom layer using a clean 
representation, updated every time the robot stops; and (c) a top layer, consisting of meta data such as 
grid resolution. 

 

 Conclusions 
 
Deliverable D4.2 summarises the developments regarding local mapping included in the control 
architectures of the BW2 robotic platforms that need them to attain their goals as part of the inspection 
framework. As has been described, local maps serve to different purposes in the different cases: the 
inspection crawler builds them using accumulated laser scans and navigation data, and use them to plan 
their own motion and map positive and negative obstacles; the underwater inspection drone builds local 
occupancy maps using sonar and navigation data, and use them to keep track of the inspection progress 
during the operation so that the operator can assess the reliability of the inspection; finally, the aerial 
inspection drone builds specific local maps (i.e. they are not the standard occupancy maps) also using 3D 
laser scans and navigation data, and make use of them for both efficient motion estimation and obstacle 
perception and collision avoidance during navigation.  
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