
This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No. 871260

Autonomous Robotic Inspection and Maintenance on Ship Hulls and
Storage Tanks

Deliverable report – D4.2

Context

Deliverable title Local Mapping and Obstacle Perception

Lead beneficiary UIB

Author(s) Partners involved

Work Package WP04

Deliverable due date March 2023 (M39)

Document status

Version No. 1

Type REPORT

Dissemination level Public

Last modified 17 April 2023

Status RELEASED

Date approved 17 April 2023

Approved by

Coordinator

Prof. Cédric Pradalier (CNRS)

Signature:

Declaration Any work or result described therein is genuinely a result of the
BUGWRIGHT2 project. Any other source will be properly referenced where
and when relevant.

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 1 version 1 status: released

TABLE OF CONTENTS

LIST OF FIGURES ..1

LIST OF TABLES ..2

ABBREVIATIONS ..2

REFERENCED DOCUMENTS ...3

HISTORY OF CHANGES ..3

Executive summary ...4

I. Introduction ..4

II. Local Mapping and Obstacle Perception in the Aerial Inspection Drone ...5

 Brief overview of the sensor suite and the control architecture ...5

 Local mapping for motion estimation ..7

 Local mapping for obstacle perception ..11

III. Local Mapping and Obstacle Perception for the Underwater Inspection Drone14

 Setup overview ...14

 Multibeam sonar-based generation of inspection maps ...14

 Front-plane depth and scale perception ..15

IV. Local Mapping and Obstacle Perception for the Inspection Crawler ...18

 Stop and map procedure ...18

 Obstacle perception ...19

 Pose correction and ICP ...19

 From point clouds to texture maps ..20

V. Conclusions ...21

LIST OF FIGURES

Figure 1: Control software of the aerial inspection drone shown as a layered architecture.6
Figure 2: Full-state estimator module (aerial inspection drone). ...6
Figure 3: Picture of the aerial inspection drone, with indication of the main hardware components that
support the control architecture. ...7
Figure 4: Overview of LiODOM. ..8
Figure 5: Example of map produced by LiODOM (for the KITTI 05 sequence), comprising an unoptimised
global map generated during navigation (in white) and a local map (in red) that is retrieved according to
the position of the vehicle, to be used for next pose estimation optimisation. ..9
Figure 6: Example of cells and points produced by LiODOM (for the KITTI 05 sequence).10

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 2 version 1 status: released

Figure 7: Distances involved in the collision prevention mechanism (aerial inspection drone).12
Figure 8: Frustum used to select the points involved in the attenuation of the user's desired velocity
(aerial inspection drone). ..13
Figure 9: Illustration of the computation of the repulsion vector (aerial inspection drone).13
Figure 10: Underwater inspection drone sensor footprints on a simulated hull. ..16
Figure 11: Features detected in a sonar scan (underwater inspection drone)...16
Figure 12: Inspection maps represented as a voxel map (underwater inspection drone).17
Figure 13: Perception of feature size by means of the laser-camera setup (underwater inspection drone).
 ..17
Figure 14: Flow chart of the mapper running onboard the aerial crawler: grayed-out rectangles denote
repeated behaviour. ...18
Figure 15: RGB vs Intensity map, showing the metal plates used to test the aerial crawler: (a)
Accumulated intensity point cloud, taken from the Livox Mid-70 sensor, and (b) RGB camera feed.19

LIST OF TABLES

Table 1 : List of ICP constraints (aerial crawler) ..20
Table 2: List of ICP parameters used for pose correction (aerial crawler)..20

ABBREVIATIONS

BW2 BUGWRIGHT2
EKF Extended Kalman Filter
FL-MBS Forward-Looking MultiBeam Sonar
FMU Flight Management Unit
FOV Field of View
FSE Full State Estimator
IMU Inertial Measurement Unit
LiDAR Light Detection And Ranging (or Laser Imaging Detection and Ranging)
LiODOM Lidar-only ODOMetry
PF Particle Filter
UWB Ultra-Wide Band

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 3 version 1 status: released

REFERENCED DOCUMENTS

• Deliverable D2.1 – Crawler adaptation to BUGWRIGHT2’s requirements
• Deliverable D2.2 – AUV adaptation to BUGWRIGHT2’s requirements
• Deliverable D2.3 – MAV adaptation to BUGWRIGHT2’s requirements

• Deliverable D4.1 – Localisation
• Deliverable D5.1 – Unified Control Interfaces
• Deliverable D5.2 – Autonomous Trajectory Tracking and Obstacle Avoidance

• Deliverable D5.3 – Single-Robot Planning, Coverage and Mission Execution

These documents are stored on the file sharing site hosted by CNRS.

HISTORY OF CHANGES

Date Written by Description of change Approver Version No.

19/01/2023 UIB Starting document v0.0

01/03/2023 UIB Section II v0.1

01/03/2023 NTNU Section III v0.2

21/03/2023 CNRS Section IV v0.3

27/03/2023 UPORTO Sections III & IV v0.4

30/03/2023 UIB Sections I, V & document
finalisation

 v0.5

31/03/2023 CNRS Proofreading v0.6

13/04/2023 Validation CNRS v1.0

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 4 version 1 status: released

Executive summary

Deliverable D4.2 focuses on the mapping functionalities running on the BUGWRIGHT2 (BW2) platforms
that require representations of the immediate surroundings for their operation, i.e. local maps, being the
typical use obstacle representation and motion planning for collision avoidance, though other uses also
take place, e.g. motion estimation.

 Introduction

The project BW2 aims at the development of several robotic platforms oriented to making (ship)
inspections easier and faster for the inspection crew. To this end, the robots need a suitable control
architecture to solve the respective operating cases with the required level of autonomy. Among others,
the control architecture may need representations of the environment at different levels to achieve the
intended goals. These representations can be regarded as containers where the corresponding platform
stores processed data collected by means of the onboard sensors as well as possibly updates in accordance
to new findings.

Deliverable D4.2 focuses on the mapping functionalities running on the BW2 platforms that make use of
representations of the immediate surroundings during their operation, i.e. local maps, being the typical
use that of obstacle representation and motion planning for collision avoidance, though other uses can
also take place, as described along the following sections.

Deliverables D4.1 – Localisation (already released), D5.1 – Unified Control Interfaces (already released),
D5.2 – Autonomous Trajectory Tracking and Obstacle Avoidance (due M39) and D5.3 – Single-Robot
Planning, Coverage and Mission Execution (due M45) describe complementary aspects of the control
architectures of the respective BW2 platforms. Consequently, a certain level of overlap can be expected
between the contents of the aforementioned deliverables and this document, as a result of trying to make
every deliverable a reasonably self-contained report.

The rest of this document is organised as follows: Section II is devoted to the aerial inspection drone, where
Section II.1 overviews very briefly the control architecture where the aforementioned local mapping
functionalities reside, Section II.2 describes local mapping oriented to LiDAR-based motion estimation, and
Section II.3 refers to local maps for obstacle representation and collision prevention; Section III deals with
local mapping and depth perception issues as solved by the underwater inspection drone, reviewing the
sensor suite in Section III.1 and the perception-related functionalities in Sections III.2 and III.3; Section IV
is for the inspection crawler, detailing obstacle perception in Sections IV.1 and IV.2, and mapping in
Sections IV.3 and IV.4; finally, Section V summarises and concludes deliverable D4.2.

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 5 version 1 status: released

 Local Mapping and Obstacle Perception in
the Aerial Inspection Drone

This section describes local mapping functionalities that are available in the control architecture of the UIB
aerial inspection drone. These functionalities serve to different purposes but share the feature of building
local representations of the surrounding environment in order to produce the corresponding estimations.
On the one hand, local maps are built for platform motion estimation on the basis of the laser scans
supplied by a 3D LiDAR. On the other hand, the same sensor supplies information on the surrounding
obstacles, which have to be perceived in order to be able to navigate safely throughout the environment.

In order to situate correctly these two functionalities in the control software of the platform, the vehicle
control architecture is briefly overviewed in the next section, to describe in the posterior sections the
processes of building the respective local maps involved in motion estimation and obstacle perception.

 Brief overview of the sensor suite and the control architecture

Figure 1 shows the control architecture of the aerial inspection drone assimilated to a hierarchical layered
structure, where each layer implements a different level of control. Moreover, mid- and high-level control
layers run different robot behaviours that contribute to the generation of the final motion control
command. In more detail:

• The low-level control layer comprises attitude and thrust control, as well as the behaviours that
check the viability of the flight. We make use of the DJI FMU services, through the DJI SDK, to make
available this functionality.

• The mid-level control layer accommodates safety-oriented control by including the safety
manager module, which comprises several robot behaviours that combine the user desired speed
command with the available sensor data to obtain final and safe speed and height set-points that
are sent to, respectively, the horizontal speed and height controllers.

• At the highest level of the hierarchy, the application-oriented control layer allows the execution
of predefined missions by means of the mission manager module, which is in charge of executing
higher autonomy behaviours that implement missions defined as a set of way-points to attain. The
corresponding motion commands are generated in sequence and issued to the corresponding
position controller, while monitoring way-point achievement and overall correct mission
execution.

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 6 version 1 status: released

Figure 1: Control software of the aerial inspection drone shown as a layered architecture.

As shown in Figure 1, a state estimation module is transverse to all layers. This module is in charge of
processing and fusing all the sensor data available on-board, to estimate with enough accuracy the
platform state. The state estimate is employed in all control layers, as could be expected.

Given the nature of the missions handled by the mission manager, defined in terms of sets of way-points
to be achieved, the platform state comprises the platform pose (𝑥𝑥,𝑦𝑦, 𝑧𝑧,𝜑𝜑,𝜃𝜃,ψ), the linear velocities
(�̇�𝑥, �̇�𝑦, �̇�𝑧) and accelerations (�̈�𝑥, �̈�𝑦, �̈�𝑧), and the angular velocities �φ̇, �̇�𝜃, ψ̇�. The full state estimator (FSE)
module shown in Figure 2 supplies these state estimates by fusing the available navigation data (once
processed) and a number of different positioning sources. More precisely, the FSE module comprises two
cascaded Extended Kalman Filters (EKF): the local EKF fuses navigation data from motion and relative-
position sources, while the global EKF combines estimates from the local EKF with positioning data from
global localisation sources such as GPS and/or UWB-based position estimators, as well as from SLAM
algorithms (whichever are available) fed by the on-board sensors.

Figure 2: Full-state estimator module (aerial inspection drone).

In its current configuration, the sensor suite of the aerial inspection drone comprises (see Figure 3, and
deliverable D2.3 – MAV adaptation to BUGWRIGHT2’s requirements):

• A 3D laser scanner from Ouster, model Ouster OS1-64 Gen 2, which supplies structured 3D point
clouds organised into 64 channels, with 2048 bins per channel (maximum), able to operate at 10
or 20 Hz. The maximum range is 100 m, for a Field of View (FOV) of +22.5° to -22.5° (vertical) and
360° (horizontal).

• A downward-looking LIDAR-Lite v3 single-beam laser range finder used to supply height data for
a maximum range of 40 meters. This sensor is complemented with a barometric pressure sensor
that is included in the Flight Management Unit (FMU) of the drone.

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 7 version 1 status: released

• (optionally) An upward-looking TeraRanger Evo 60m Time-of-Flight (ToF) infrared range finder to
supply the distance to the ceiling up to a maximum range of 60 meters.

• An imaging system which can interchangeably consist of an RGB-D or a lighter RGB camera
(Figure 3 shows the configuration including an RGB-D camera from Intel, model Intel Realsense
D435i, which also integrates a 6 DOF IMU).

• An Ultra-Wide Band (UWB) receiver/tag, used as part of a UWB-based global localisation system.
• GNSS and RTK GNSS receivers.

In addition to motion estimation, the 3D structured point cloud provided by the 3D laser scanner is used
within the control architecture to prevent collisions with surrounding obstacles, while attenuating the
speed of the platform based on the proximity to them. From the mapping perspective, both procedures
include building a representation of the local environment of the platform. More details are given in the
following sections.

Figure 3: Picture of the aerial inspection drone,

with indication of the main hardware components that support the control architecture.

 Local mapping for motion estimation

LiODOM (LiDAR-only ODOMetry) is a laser-based motion estimation module developed within the
framework of project BW2 by the UIB. Currently, it is the odometry source that feeds the local EKF of the
full state estimator of the aerial inspection drone (Figure 2). As already said, in the current configuration
of the drone, the input for LiODOM comes from an Ouster OS1-64 3D laser scanner, although it is
independent of the sensor. LiODOM works naturally with structured point clouds, as the ones provided by
the Ouster LiDAR; in case the input sensor is not of this class, a specific module to transform from
unstructured to structured point clouds must be employed. Next sections provide relevant data about the
local mapping functionalities.

LiDAR odometry

Figure 4 illustrates LiODOM. As its name suggests, LiODOM can compute the pose of the platform without
the help of any other sensor, such as IMU, GPS, etc. It is fundamentally organised into two main

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 8 version 1 status: released

components, odometry and mapping, which are executed in parallel during task execution. The mapping
module, which is the fundamental topic covered in this deliverable, builds an unoptimised global
representation of the environment Mi i.e. loop closures are not detected nor considered. From this global
map, a local representation 𝑚𝑚𝑖𝑖 is extracted according to the current pose of the platform. This local map is
further used to find correspondences with the current point cloud in the next estimation stage. Each of
these components is detailed next.

The odometry module is further divided into two synchronised threads to decouple the feature extraction
from the pose estimation. In the feature extraction stage, the received sweep 𝑆𝑆𝑖𝑖 at time step i is divided
into its different scans but discarding points which do not fall within an interval [𝑟𝑟𝑚𝑚𝑖𝑖𝑚𝑚, 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚]. Next, a set of
edge features 𝐸𝐸𝑖𝑖𝐿𝐿 (as defined in LOAM1) are detected and selected in accordance to the local curvature
within the input point cloud. Each scan is additionally split into sectors and a maximum number of points
per sector is chosen to ensure an even distribution of point data throughout the environment for better
optimisation conditioning.

Figure 4: Overview of LiODOM.

The resulting edges are then processed by the pose estimation thread. Each edge 𝑝𝑝𝑗𝑗
𝐿𝐿𝑖𝑖 in the LiDAR

coordinate frame L is transformed into world coordinates as 𝑝𝑝𝑗𝑗𝑊𝑊 = 𝑇𝑇𝐿𝐿𝑖𝑖
𝑊𝑊𝑝𝑝𝑗𝑗

𝐿𝐿𝑖𝑖, being 𝑇𝑇𝐿𝐿𝑖𝑖
𝑊𝑊 the transformation

from LiDAR to world at time 𝑡𝑡𝑖𝑖. A constant velocity motion model is initially assumed for this
transformation.

Despite LiODOM is able to provide an estimation of the pose using only LiDAR data, at this point we can
take advantage of the IMU and the height estimated by the FSE to enrich the initial guess on the platform
motion. Next, a set of point-to-line correspondences are established between each point 𝑝𝑝𝑗𝑗𝑊𝑊 and a local

map 𝑚𝑚𝑖𝑖. The latter is built by the mapping module, which is described later.

Let us now denote the set N�𝑝𝑝𝑗𝑗𝑊𝑊� as the 𝑘𝑘-th nearest points in the local map of the point 𝑝𝑝𝑗𝑗𝑊𝑊 and 𝑁𝑁𝑚𝑚�𝑝𝑝𝑗𝑗𝑊𝑊�

as the 𝑛𝑛-th nearest neighbour. We first check whether N�𝑝𝑝𝑗𝑗𝑊𝑊� really conforms a line and, if this is the case,

we compute the point to line distance from 𝑝𝑝𝑗𝑗𝑊𝑊 to the line 𝑙𝑙�𝑝𝑝𝑗𝑗𝑊𝑊�, resulting from 𝑁𝑁1�𝑝𝑝𝑗𝑗𝑊𝑊� and 𝑁𝑁2�𝑝𝑝𝑗𝑗𝑊𝑊�, as:

𝑑𝑑𝑒𝑒 �𝑝𝑝𝑗𝑗𝑊𝑊, 𝑙𝑙�𝑝𝑝𝑗𝑗𝑊𝑊�� =
| �𝑝𝑝𝑗𝑗𝑊𝑊 − 𝑁𝑁1�𝑝𝑝𝑗𝑗𝑊𝑊�� × 𝑁𝑁12 |

| 𝑁𝑁12 |
 ,

1 Ji Zhang and Sanjiv Singh, LOAM: Lidar Odometry and Mapping in Real-time, in Proc. Robotics : Science and
Systems Conference (RSS), 2014

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 9 version 1 status: released

with 𝑁𝑁12 = 𝑁𝑁1�𝑝𝑝𝑗𝑗𝑊𝑊� − 𝑁𝑁2�𝑝𝑝𝑗𝑗𝑊𝑊�. Next, the optimal pose of the LiDAR 𝑇𝑇𝐿𝐿𝑖𝑖
𝑊𝑊 is computed by means of non-

linear optimisation. To this end, each valid correspondence provides a constraint whose residual is defined
as:

ϱ𝑒𝑒 �𝑝𝑝𝑗𝑗𝑊𝑊, 𝑙𝑙�𝑝𝑝𝑗𝑗𝑊𝑊�� = ω𝑗𝑗 𝑑𝑑𝑒𝑒 �𝑝𝑝𝑗𝑗𝑊𝑊, 𝑙𝑙�𝑝𝑝𝑗𝑗𝑊𝑊�� ,

where ω𝑗𝑗 is a weighting term defined by:

ω𝑗𝑗 = 1 −
𝑟𝑟𝑗𝑗 − 𝑟𝑟min

𝑟𝑟max − 𝑟𝑟min
 ,

being 𝑟𝑟𝑗𝑗 the range returned by the LiDAR for edge 𝑝𝑝𝑗𝑗
𝐿𝐿𝑖𝑖. Then, the optimal pose is computed by minimising

the loss function 𝐽𝐽 �𝑇𝑇𝐿𝐿𝚤𝚤
 𝑊𝑊� ,Υ�:

J �𝑇𝑇𝐿𝐿𝚤𝚤
 𝑊𝑊� ,Υ� =

1
2
�ρ�||ϱ𝑒𝑒 �𝑇𝑇𝐿𝐿𝚤𝚤

𝑊𝑊� 𝑝𝑝𝑗𝑗
𝐿𝐿𝑖𝑖 , 𝑙𝑙 �𝑇𝑇𝐿𝐿𝚤𝚤

𝑊𝑊� 𝑝𝑝𝑗𝑗
𝐿𝐿𝑖𝑖�� ||2�

𝑗𝑗∈Υ

 ,

and, hence, the optimal pose can be stated as:

𝑇𝑇𝐿𝐿𝑖𝑖
𝑊𝑊 = 𝑚𝑚𝑚𝑚𝑛𝑛

𝑇𝑇𝐿𝐿𝚤𝚤
 𝑊𝑊�
𝐽𝐽 �𝑇𝑇𝐿𝐿𝚤𝚤

 𝑊𝑊� ,Υ� ,

where Υ is the set of correspondences established between the detected edges and the local map, and ρ
is a Huber loss function.

The registration of the extracted edges 𝐸𝐸𝑖𝑖𝐿𝐿 on the global map 𝑀𝑀𝑖𝑖 is performed by the mapping module using
the last optimised pose 𝑇𝑇𝐿𝐿𝑖𝑖

𝑊𝑊. This module also generates the corresponding local map 𝑚𝑚𝑖𝑖. Figure 5 shows

an example of the maps resulting from LiODOM.

Figure 5: Example of map produced by LiODOM (for the KITTI 05 sequence), comprising an unoptimised global map generated during
navigation (in white) and a local map (in red) that is retrieved according to the position of the vehicle, to be used for next pose estimation

optimisation.

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 10 version 1 status: released

Map Representation

Given the high frequency at which the map must be accessed, the type of data structure chosen to
represent 3D space becomes crucial for fast operation. A single KD-tree has been typically used to this end.
However, this option presents several drawbacks: on the one hand, the full tree tends to change as points
are added or deleted to/from the tree, and, on the other hand, the KD-tree performance decreases as more
points need to be managed. To overcome these issues, in LiODOM we introduce an efficient hashing data
structure for representing the map, taking inspiration from other recent works. To be more specific, the
3D space is partitioned into a set of disjoint cuboids of fixed size that we name cells. A cell 𝐶𝐶𝑗𝑗 is represented

by its geometric center, denoted by (𝑐𝑐𝑗𝑗𝑚𝑚, 𝑐𝑐𝑗𝑗𝑗𝑗, 𝑐𝑐𝑗𝑗𝑗𝑗), and includes all 3D points whose coordinates fall into its

limits. Examples of cells and points can be found in Figure 6. We define a map at time 𝑡𝑡𝑖𝑖 as 𝑀𝑀𝑖𝑖 = {𝐻𝐻𝑖𝑖 ,𝐶𝐶𝑖𝑖},
where 𝐻𝐻𝑖𝑖 is a hash table and 𝐶𝐶𝑖𝑖 is the set of existing cells up to time 𝑡𝑡𝑖𝑖. Table 𝐻𝐻𝑖𝑖 allows us to rapidly get
access to a specific cell 𝐶𝐶𝑗𝑗 using a hash function based on its coordinates, being defined by:

H�Cj� = �cjx ⊕ �cjy ≪ 1�� ⊕ �cjz ≪ 2� ,

where ⊕ and ≪ are, respectively, the bitwise XOR and the left shift operators. This function has been
selected in order to minimise, as much as possible, hash collisions. That is to say, if bits of a binary word
have roughly 50% chance of being 0 or 1, i.e. as randomly distributed as possible, the bitwise XOR between
such binary words results into another word also following a random distribution. Furthermore, since the
bitwise XOR is a symmetric operation, the order of the elements in the hash code is lost. To break this
symmetry, we use the shift operator, at a limited computational cost.

Figure 6: Example of cells and points produced by LiODOM (for the KITTI 05 sequence).

Map Updates

In LiODOM, map updates are performed once per sweep, being the input data the set of edges 𝐸𝐸𝑖𝑖𝐿𝐿 extracted
from 𝑆𝑆𝑖𝑖 and the last optimised transformation 𝑇𝑇𝐿𝐿𝑖𝑖

𝑊𝑊. Unlike other approaches, where the raw point cloud is

used for mapping, in our approach, the map is built using directly the edges to speed up the mapping

procedure, resulting into more sparse maps. Initially, every point 𝑝𝑝𝑗𝑗
𝐿𝐿𝑖𝑖 ∈ 𝐸𝐸𝑖𝑖𝐿𝐿 is transformed into world

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 11 version 1 status: released

coordinates. Next, for each point 𝑝𝑝𝑗𝑗𝑊𝑊 = (𝑥𝑥,𝑦𝑦, 𝑧𝑧), we compute the geometric center of the cell 𝐶𝐶𝑞𝑞 in which

the point should be stored as:

�
Cqx
Cqy
Cqz

� =

⎣
⎢
⎢
⎢
⎢
⎡�𝑥𝑥/𝑠𝑠𝑚𝑚𝑗𝑗�𝑠𝑠𝑚𝑚𝑗𝑗 +

1
2
𝑠𝑠𝑚𝑚𝑗𝑗

�𝑦𝑦/𝑠𝑠𝑚𝑚𝑗𝑗�𝑠𝑠𝑚𝑚𝑗𝑗 +
1
2
𝑠𝑠𝑚𝑚𝑗𝑗

⌊𝑧𝑧/𝑠𝑠𝑗𝑗⌋𝑠𝑠𝑗𝑗 +
1
2
𝑠𝑠𝑗𝑗 ⎦

⎥
⎥
⎥
⎥
⎤

where 𝑠𝑠𝑚𝑚𝑗𝑗 and 𝑠𝑠𝑗𝑗 are the metric cell sizes for the corresponding dimension. We next check if the cell 𝐶𝐶𝑞𝑞 is

already in the map by querying the hash table 𝐻𝐻 using the key 𝐻𝐻�𝐶𝐶𝑞𝑞�. If this is the case, the point is added

to the existing cell. Otherwise, a new cell 𝐶𝐶𝑚𝑚 is created with point 𝑝𝑝𝑗𝑗𝑊𝑊 as seed, to be added next to 𝐶𝐶 and

indexed on 𝐻𝐻 by 𝐻𝐻(𝐶𝐶𝑚𝑚).

Finally, modified cells exceeding a certain number of points are filtered using a 3D voxel grid approach.
Note that our data structure allows us to rapidly update just the required areas of the environment,
avoiding the update of the whole map at each iteration. This fact contributes to speeding up the mapping
procedure.

Adaptive Local Map Computation

Lastly, the mapping module generates a local map 𝑚𝑚𝑖𝑖, which contains the points of 𝑀𝑀𝑖𝑖 within a certain
range from the current LiDAR pose. Assuming a moderate motion between two consecutive sweeps, these
points are enough to find correspondences for the next pose estimation step. To build the local map, we
first retrieve the cell 𝐶𝐶𝐿𝐿𝑖𝑖 where the LiDAR is located at that moment using its current position 𝑇𝑇𝐿𝐿𝑖𝑖

𝑊𝑊. Next,

assuming a 3D grid arranged over 𝑀𝑀𝑖𝑖, neighbouring cells of 𝐶𝐶𝐿𝐿𝑖𝑖 up to a certain distance are further retrieved

from 𝑀𝑀𝑖𝑖, and their corresponding points are merged to form the local map 𝑚𝑚𝑖𝑖. This operation results to be
very fast due to the proposed hashing structure. Points on 𝑚𝑚𝑖𝑖 are finally organised into a KD-tree to speed
up nearest neighbour search. Note that this tree is very simple, as it just contains a small subset of the total
map points, in contrast to managing the whole global map.

On the other side, we refer to this local map as adaptive since it always covers a specific area of the
environment, contrary to a local map built by aggregation of a sliding window. Besides, it provides us with
correspondences with revisited areas of the environment in a natural way. Additionally, the availability of
𝑚𝑚𝑖𝑖 avoids us to search for correspondences against the whole map, as done by other solutions. Finally, to
avoid reduced amounts of points from unexplored areas, we always add the last three sweeps to 𝑚𝑚𝑖𝑖.

 Local mapping for obstacle perception

As already mentioned, inside the aerial inspection drone, the LiDAR sensor is also used for perceiving the
environment and preventing collisions with the surrounding obstacles. To be precise, the collision
prevention mechanism makes use of the 3D point-cloud in two different ways:

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 12 version 1 status: released

• On the one hand, the user’s desired speed is attenuated towards zero when the platform
approaches an obstacle. The closer the obstacle, the greater the attenuation, so that the user’s
desired speed is completely attenuated when the platform is very close to the obstacle.

• On the other hand, all obstacles surrounding the platform create a repulsion vector for the vehicle
to move away from them. The closer the obstacle is, the greater the repulsion vector that is
generated. Once all the vectors have been calculated (for all surrounding obstacles) they are added
together to obtain a single repulsion vector/velocity.

Two distances are involved in the collision prevention mechanism: the attenuation distance 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎 and the
minimum distance allowed to obstacles 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚, where 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎 > 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚. Given these two distances and
considering a single obstacle situated at a distance 𝑑𝑑𝑜𝑜 from the aerial platform, three different situations
may arise:

1. 𝑑𝑑𝑜𝑜 > 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎: the obstacle is not deemed a threat for the platform and hence it is not considered by
the collision prevention mechanism.

2. 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 < 𝑑𝑑𝑜𝑜 < 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎: the obstacle is not used to create a repulsion vector to move the aerial platform
away from it, but 𝑑𝑑𝑜𝑜 is used to attenuate the user’s desired speed in the case this points towards
the obstacle. As a result, the platform can still approach the obstacle, but with decreasing speed.

3. 𝑑𝑑𝑜𝑜 < 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚: the vehicle is too close to the obstacle so that 𝑑𝑑𝑜𝑜 is used to create a repulsion vector
to move the platform away. The user’s desired speed is fully attenuated (i.e., it becomes 0) in the
case this points towards the obstacle.

Figure 7: Distances involved in the collision prevention mechanism (aerial inspection drone).

Figure 7 shows the three situations depending on where the aerial platform is situated with regard to the
two distance parameters. In the following, we detail the velocity attenuation and repulsion mechanisms.

Velocity attenuation

For a given user’s desired velocity 𝑣𝑣𝑣𝑣𝑙𝑙𝑢𝑢𝑢𝑢 to move the vehicle towards an obstacle situated at distance 𝑑𝑑𝑜𝑜,
the velocity is attenuated by a factor 𝜆𝜆 ∈ [0, 1] which is computed as:

λ = 𝑚𝑚𝑚𝑚𝑛𝑛�1.0,𝑚𝑚𝑚𝑚𝑥𝑥 �0.0, �
𝑑𝑑𝑜𝑜 − 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚

𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎 − 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚
���

so that the attenuated desired velocity results into:

𝑣𝑣𝑣𝑣𝑙𝑙𝑚𝑚𝑎𝑎𝑎𝑎 = λ ∙ 𝑣𝑣𝑣𝑣𝑙𝑙𝑢𝑢𝑢𝑢

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 13 version 1 status: released

Notice that if there is no obstacle in the direction of the desired velocity, or this is farther than 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎, the
desired velocity is not attenuated.

The distance 𝑑𝑑𝑜𝑜 is computed considering all the points of the point cloud situated within a pyramidal
frustum oriented in the direction of the user's desired speed (see Figure 8). The FOV of the frustum is 45∘
in both the vertical and horizontal directions, with the near and far planes situated at, respectively, a
distance equal to the robot radius 𝑑𝑑𝑟𝑟 and at a distance 𝑑𝑑𝑚𝑚𝑎𝑎𝑎𝑎 > 𝑑𝑑𝑟𝑟. Then, 𝑑𝑑𝑜𝑜 is calculated as the minimum
of the distances to the points within the frustum (in red in Figure 8).

Figure 8: Frustum used to select the points involved in the attenuation of the user's desired velocity (aerial inspection drone).

Figure 9: Illustration of the computation of the repulsion vector (aerial inspection drone).

Calculation of the repulsion vector

A repulsion speed vector 𝑟𝑟𝑣𝑣𝑝𝑝𝑝𝑝 is created for each 3D point 𝑝𝑝 within the point cloud and situated at a

distance 𝑑𝑑𝑝𝑝 < 𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 (see Figure 9). The magnitude of the repulsion vector is then computed as:

�𝑟𝑟𝑣𝑣𝑝𝑝𝑝𝑝� = 𝐾𝐾 ∙ �𝑑𝑑𝑚𝑚𝑖𝑖𝑚𝑚 − 𝑑𝑑𝑝𝑝�

where 𝐾𝐾 is the repulsion factor and the direction of the resulting vector is pointing away from 𝑝𝑝. The final
repulsion vector 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑒𝑒𝑝𝑝 is computed as the mean of all the repulsion vectors defined for each point

separately. In addition, the magnitude of 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑒𝑒𝑝𝑝 is limited to the maximum speed allowed.

Considering both the velocity attenuation and the repulsion mechanisms, the final velocity command
results:

𝑣𝑣𝑣𝑣𝑙𝑙𝑐𝑐𝑚𝑚𝑢𝑢 = 𝑣𝑣𝑣𝑣𝑙𝑙𝑚𝑚𝑎𝑎𝑎𝑎 + 𝑣𝑣𝑣𝑣𝑙𝑙𝑟𝑟𝑒𝑒𝑝𝑝

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 14 version 1 status: released

 Local Mapping and Obstacle Perception for
the Underwater Inspection Drone

In this section, we describe the methods developed for local mapping and obstacle/depth perception for
the underwater platform under development in BW2. As already described in deliverable D2.2 – AUV
adaptation to BUGWRIGHT2’s requirements, the underwater vehicle developed jointly by Blueye, NTNU
and UPORTO is based on the Blueye X3 ROV, with contributions from UNI-KLU on the platform localisation
side and hence also on mapping. In the following, Section III.1 revises the platform setup, while Section III.2
describes the process related to the generation of a local map used to represent the progress during the
inspection of the submerged part of a vessel hull, and Section III.3 deals with feature scale perception.

 Setup overview

In the X3 small ROV, the default integrated sensor payload consists of two Inertial Measurement Units
(IMUs), a pressure sensor providing depth measurements, and a camera inside a glass dome with (approx.)
48° degrees vertical FOV and (approx.) 77° horizontal FOV. Additionally, three external sensors are
connected to the vehicle's guest ports: a GPS on a stick for synchronisation with the global navigation
frame, a forward-looking multibeam sonar (FL-MBS), and a DVL oriented towards the sea-bottom to
measure the speed over ground in the vehicle's frame. The FL-MBS has 130° horizontal and 20° vertical
apertures, features a configurable sight distance, and points in the same direction as the camera, with a
slight vertical offset. The footprints of the camera and the forward-looking sonar are depicted in Figure 10,
with the Blueye ROV facing a simulated ship hull.

An additional, lower-cost obstacle perception sensor setup has been under investigation from the side of
UPORTO, apart from the aforementioned setup based on the FL-MBS. This setup adopts a triangulation-
based visual approach and comprises two laser pointers combined with an imaging sensor.

The ROV is actuated in surge, sway, heave, and yaw. The localisation, guidance, and control algorithms all
run fully onboard the vehicle, whereas the optical imagery and the sonar data are processed at the surface,
within an external computer due to the limited computational capacity onboard the vehicle. The operator
has the possibility to interact with the vehicle for safety reasons based on the online data feed and to
provide high-level input.

 Multibeam sonar-based generation of inspection maps

To keep track of the inspection progress during the operation, an inspection map is built online. Using sonar
and navigation data, everything seen by the vehicle is registered with position, and point clouds are
established to form an occupancy map. The map contains local uncertainty information that the operator
can use to assess the reliability of the inspection. Automatic detection of coverage holes is added to allow
the autonomous system to find them and (re)inspect the area. The map is referred here as inspection map

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 15 version 1 status: released

because it is solely used for the drone to keep track of the mission and not for any other tasks such as the
reconstruction of the ship hull, which is an independent task.

Using the assumption that the surface in front of the ROV has a flat shape, the closest detected feature for
each sonar beam provides a set of information about the surroundings that allows the creation of the
inspection map. Therefore, to build the inspection map, features are detected for each sonar scan. An
example is displayed in Figure 11, with the detected features highlighted as green dots.

However, before building the map, the sonar features must be filtered for noise and outliers. To achieve
this, a method based on averaged point distances is proposed. It measures the average distance between
the surrounding points in a window for each point at a time. For objects that are present, the corresponding
feature points of consecutive beams are expected to be close to each other. The window size s selects a
total of s+1 consecutive beams, with half of s beams before and half of s beams after the focus point. The
average distance value for a point is then calculated to have a better understanding of its neighbourhood.

This method is more robust and less prone to true positive rejection compared to methods such as bin-
based evaluations using the direct sonar distances to the points. However, a cluster of noisy points will
anyway create a local bias and might increase rejection of true positives in that area. The rejection of the
points is then based on a threshold test.

Over time, points for the sonar scans accumulate and create a dense point cloud and enables the creation
of the voxel map. A voxel is created only if there are enough reliable points inside the area related to the
voxel. To assess and validate the proposed methods, full-scale ship hulls have been mapped. An
approximately 30 x 5 m² section of a ship was autonomously inspected twice using different inspection
patterns. The first survey contains horizontal slices taken at 1 m distance to the hull. The second survey
contains vertical slices for a 1.3 m distance to the hull. In both cases, the inspection starts at the water
surface and ends at the keel. The results of experiments on full-scale ship can be found in Figure 12.

 Front-plane depth and scale perception

A lower-cost sensor setup comprising two laser pointers and an imaging sensor is used to provide the
operator with depth data regarding the (locally) planar surface in front of the robot, as well as scale
perception, as shown in Figure 13. With the aforementioned setup, depth and scale can be calculated by
processing the camera frames after locating the laser dots reflections and triangulating them using the
camera-laser pointers intrinsics.

All this allows obstacle detection and automatic hull distance. Additionally, because of the tilt actuator on
the camera, we can adjust its tilt using the pitch calculated relative to the hull, to be applied where the hull
curvature is more pronounced. This information can be overlayed onto the video feed to provide the
operator with features scale/size perception directly onto the camera image (Figure 13). This development
adds to the data the FL-MBS provides.

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 16 version 1 status: released

Figure 10: Underwater inspection drone sensor footprints on a simulated hull.

Figure 11: Features detected in a sonar scan (underwater inspection drone).

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 17 version 1 status: released

Figure 12: Inspection maps represented as a voxel map (underwater inspection drone).

Figure 13: Perception of feature size by means of the laser-camera setup (underwater inspection drone).

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 18 version 1 status: released

 Local Mapping and Obstacle Perception for
the Inspection Crawler

In this section, we present the crawler’s approach to the mapping problem (with CNRS, Roboplanet and
UPORTO as partners involved), while taking into account contextual constraints such as obstacles, and the
need to detect free space. Maps are important to robots, as long as they are useful for obstacle avoidance,
path planning, or to constrain the attitude of the robotic system, among others. Maps become also
important to human operators, as a way to provide visual feedback from the robot's perspective.

The crawler is equipped with an RGB camera, a 3D LiDAR, and an IMU. In addition, optical sensors capture
wheel odometry. Further, a Particle Filter (PF) is used for localisation purposes by fusing IMU data, UWB
range measurements and wheel odometry data. The pose estimated by the PF is further referenced as the
PF pose. To compensate for motion uncertainties (due to e.g. drift), pose correction is performed using a
constrained version of ICP, discussed in more detail below.

 Stop and map procedure

The majority of filtering techniques, such as PFs, introduce time delays, namely between the filter
estimates and the actual observations. In that sense, the generated estimate was found to satisfy control
requirements for autonomous driving, though, nevertheless, mapping proved to be more challenging. To
solve this problem, a stop and map approach was implemented in the autonomous planner, i.e. the robot
task manager.

Figure 14: Flow chart of the mapper running onboard the aerial crawler: grayed-out rectangles denote repeated behaviour.

As shown in Figure 14, the mapper proposed is idle while the robot is moving and only captures data when
the robot stops. Once static, the point clouds accumulate and the pose is captured.

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 19 version 1 status: released

The latter approach therefore does not suffer from data delays. The PF pose is then captured around half
a second after the robot stops. Minimum stop time is set to 3 seconds, to allow the on-board laser scanner
to accumulate sufficient points for data fitting. This is especially useful with 3D LiDARs equipped with a
scanning unit, such as the Livox Mid-70 (see Deliverable D2.1 – Crawler adaptation to BUGWRIGHT2’s
requirements for the sensor suite). A sample accumulated cloud can be seen in Figure 15.

 Obstacle perception

After we have the data from the stop and map process, the accumulated point cloud is voxelized, and
processed through RANSAC, by fitting a second-degree manifold. The choice of a second-degree manifold
is rooted in the application in which the mapper will be used: ship hulls and storage tanks using
autonomous robots for inspection are often significant in size; as a result, non-flat surfaces have a
significant radius. The curvature is therefore locally negligible, i.e. the surface around the current position
of the robot can be represented as a plane. Nevertheless, a second-degree manifold captures better the
surface geometry at unique places with an important curvature, such as at the tip of the ship structure.

Finally, RANSAC inliers denote free, observable space that belongs to the detected manifold, while outliers
denote positive obstacles such as protruding objects, and negative obstacles such as holes.

(a) (b)

Figure 15: RGB vs Intensity map, showing the metal plates used to test the aerial crawler: (a) Accumulated intensity point cloud,
taken from the Livox Mid-70 sensor, and (b) RGB camera feed.

 Pose correction and ICP

ICP (Iterative Closest Point) is an algorithm used to stitch overlapping point clouds. It works by iteratively
finding the transformation that better aligns point cloud pairs. An ICP prior on the transformation to-be-
found improves the chances of converging to a valid solution.

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 20 version 1 status: released

Odometry-based PF still suffers from translational drift. To counteract that, ICP is used, in-between
accumulated point clouds to reduce drift between successive stops. Nevertheless, ICP does not always
properly converge on featureless surfaces. To overcome this issue, a constrained version of ICP is
implemented. The purpose of these constraints is to prevent ICP from reducing the quality of the estimated
PF pose when it does not properly converge. The list of constraints can be found in Table 1.

Table 1 : List of ICP constraints (aerial crawler)

Constraint type Value
2D constraint φ = θ = 𝑍𝑍 = 0
Maximum rotation norm 0.05 rad
Maximum translation norm 0.35 m
Minimum differential rotation error 0.01 rad
Minimum differential translation error 0.01 rad

After running few ICP iterations, and due to point cloud overlap, the density of points has to be
standardised for both the newly accumulated point cloud and the previous ICP map. To that end, a density
filter is applied to both inputs. Although the filter value depends on the point cloud density, the true
purpose of it is to have the same density (value) for both inputs. The full list of values for the ICP parameters
can be found in Table 2.

Table 2: List of ICP parameters used for pose correction (aerial crawler)

Parameter Mapper
Matcher KD tree matcher
Matcher KNN size 15
Error minimiser Point to plane
Maximum number of iterations 25
Octree grid filter 0.01
Maximum input point density 400000
Maximum ICP map point density 400000

Finally, the map pose is corrected according to 𝑃𝑃𝑚𝑚𝑒𝑒𝑛𝑛 = 𝑃𝑃𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝𝑃𝑃𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
−1 𝑃𝑃𝑐𝑐𝑛𝑛𝑝𝑝𝑛𝑛𝐶𝐶, where 𝐶𝐶 is the ICP correction,

inferred by matching the current accumulated cloud to the previously accumulated point cloud, 𝑃𝑃𝑝𝑝𝑟𝑟𝑒𝑒𝑝𝑝 is

the current pose in the reference frame of the map, 𝑃𝑃𝑐𝑐𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the previously captured PF pose when the

robot was still static, and 𝑃𝑃𝑐𝑐𝑛𝑛𝑝𝑝𝑛𝑛 is the most recently captured pose, with the robot also being static.

 From point clouds to texture maps

Up to this point, the proposed framework still lacks a high-level visual component, to be used by the system
operator for visual feedback, manual driving, and debugging a possible snag. So far, point clouds have
proven to be versatile data containers, and they are the precursors to creating maps. Nevertheless, there

BUGWRIGHT2 Deliverable D4.2
Grant Agreement No. 871260 Dissemination level: PU

Page 21 version 1 status: released

is a need for a representation that is finite in space, and intelligible for people who are not point cloud
experts. To that end, a multi-layer texture map was conceived.

The generated texture is a projection of the RGB image on the robot surface. In the latter context, we will
assume that the ground is flat. Ground pixels are now projected onto the camera frame, for color
extraction. To do so, we will use the pinhole model: 𝑝𝑝 = 𝐴𝐴[𝑅𝑅|𝑡𝑡]𝑃𝑃𝑔𝑔 where 𝑃𝑃𝑔𝑔 is a 3D ground point, [𝑅𝑅|𝑡𝑡] is

the extrinsic matrix that provides the geometric connection between the LiDAR and camera frames, and 𝐴𝐴
is the camera intrinsic matrix, obtained by checkerboard calibration. Finally, the colors of ground points Pg

are inferred by copying the colors of the nearest pixel after projection, i.e., those of p(u, v, 1).

We have now projected the RGB image onto the ground surrounding the robot. What follows is the fusion
of relevant semantic information, such as free spaces and obstacles, extracted from point cloud data. As
such, pixels not seen by the LiDAR, i.e. unobservable space, will be marked in black, pixels belonging to
obstacles will be marked in red, and free space will keep the original RGB colors. The texture map has 3
layers: (a) a bottom layer, consisting of a dynamically updated projection of the ground portion of the
image, drawn at the estimated pose; (b) a middle layer, that overwrites the bottom layer using a clean
representation, updated every time the robot stops; and (c) a top layer, consisting of meta data such as
grid resolution.

 Conclusions

Deliverable D4.2 summarises the developments regarding local mapping included in the control
architectures of the BW2 robotic platforms that need them to attain their goals as part of the inspection
framework. As has been described, local maps serve to different purposes in the different cases: the
inspection crawler builds them using accumulated laser scans and navigation data, and use them to plan
their own motion and map positive and negative obstacles; the underwater inspection drone builds local
occupancy maps using sonar and navigation data, and use them to keep track of the inspection progress
during the operation so that the operator can assess the reliability of the inspection; finally, the aerial
inspection drone builds specific local maps (i.e. they are not the standard occupancy maps) also using 3D
laser scans and navigation data, and make use of them for both efficient motion estimation and obstacle
perception and collision avoidance during navigation.

	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	REFERENCED DOCUMENTS
	HISTORY OF CHANGES
	Executive summary
	I. Introduction
	II. Local Mapping and Obstacle Perception in the Aerial Inspection Drone
	II.1. Brief overview of the sensor suite and the control architecture
	II.2. Local mapping for motion estimation
	II.3. Local mapping for obstacle perception

	III. Local Mapping and Obstacle Perception for the Underwater Inspection Drone
	III.1. Setup overview
	III.2. Multibeam sonar-based generation of inspection maps
	III.3. Front-plane depth and scale perception

	IV. Local Mapping and Obstacle Perception for the Inspection Crawler
	IV.1. Stop and map procedure
	IV.2. Obstacle perception
	IV.3. Pose correction and ICP
	IV.4. From point clouds to texture maps

	V. Conclusions

