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Executive summary 
This document describes novel deep-learning methods aiming at detecting defects in images in a visual 

way. The work described here focuses mostly on the detection of coating breakdown and corrosion (CBC). 

In this regard, we have developed two different methodologies: one that adopts an object detection 

approach based on bounding boxes regression while the other corresponds to a semantic segmentation 

algorithm, i.e. performs classification at the pixel level.  

The contents of this report can be partly found in the following publications: 

1. Kai YAO, Alberto ORTIZ, Francisco BONNIN-PASCUAL 

A DCNN-based Arbitrarily Oriented Object Detector for Quality Control and Inspection 

Applications, arXiv preprint arXiv:2101.07383v2, DOI: 10.48550/arXiv.2101.07383 (2021) 

(journal paper submitted, under review) 

2. Kai YAO, Alberto ORTIZ, Francisco BONNIN-PASCUAL 

A Weakly-Supervised Semantic Segmentation Approach based on the Centroid Loss: Application 

to Quality Control and Inspection, IEEE Access, vol. 9, pp. 69010 – 69026 (2021) 

3. Kai YAO  

Novel deep learning-based identification methods for accurate, orientation-aware visual 

detection with application to inspection and quality control 

PhD Dissertation, University of the Balearic Islands (2022) 

I. Introduction  
On the basis of the concept of Convolutional Neural Networks (CNN) proposed by LeCun and his 

collaborators (in the form of the well-known LeNet networks (Lecun, Bottou, Bengio, & Haffner, 1998)), 

followed by the technological breakthrough that allowed training artificial neural structures with a number 

of parameters amounting to millions (Krizhevsky, Sutskever, & Hinton, 2012), deep CNNs (DCNNs) have 

demonstrated remarkable capabilities for problems so complex as image classification, multi-instance 

multi-object detection or multi-class semantic segmentation. As it is well known in the research 

community, all this has been accomplished because of the "learning the representation" capability of CNNs. 

This capability is embedded in the set of multi-scale feature maps defined in their architecture through 

non-linear activation functions and a number of convolutional filters that are automatically learnt during 

the training process by means of iterative back-propagation of prediction errors between current and 

expected output.  

In this report, we deal with the detection of one of the most common defects that can affect steel surfaces, 

i.e. coating breakdown and/or corrosion (CBC), in any of its many different forms. This is of particular 

relevance where the integrity of steel-based structures is critical, e.g. in large-tonnage vessels, storage 

tanks, etc. An early detection, through suitable maintenance programmes, prevents these structures from 

suffering major damage which can ultimately compromise their integrity and lead to accidents (with maybe 

catastrophic consequences, in the case of vessels, for the crew and passengers, environmental pollution or 

damage and/or total loss of the ship, its equipment and its cargo). The inspection of those structures by 

humans is a time-consuming, expensive and commonly hazardous activity, which, altogether, suggests the 
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introduction of defect detection tools to alleviate the total cost of an inspection. Figure 1 shows images of 

metallic vessel surfaces affected by CBC. 

 

  
Figure 1: Examples of coating breakdown and corrosion (CBC) affecting ship surfaces. 

In the following, we describe two different methodologies to address the visual inspection task and hence 

deal with the CBC detection problem: one that adopts an object detection approach based on bounding 

boxes regression (Section II) while the other corresponds to a semantic segmentation algorithm, i.e. 

performs classification at the pixel level (Section III). 

II. Bounding-boxes regression-based approach 

In this section, we adopt DCNN-based methodologies with an orientation towards multi-class object 

recognition, a domain for which DCNNs have shown very competitive performance under different 

operating conditions and with a minimum of human interaction or expert process knowledge. The proposal 

described in this work is a generic solution for multi-scale, arbitrarily-oriented object detection that can be 

applied to any context (after proper training). By arbitrarily-oriented object detection we mean that the 

output of the detector is a collection of oriented bounding boxes likely to contain any of the objects of 

interest for the task at hand. The fact that the detector is aware of objects orientation permits adapting 

the detection to the area where the object lies without involving more pixels from the background than 

necessary, thus producing a more effective detection (see Figure 2 for an illustration). On the other side, a 

multi-scale detector allows dealing with objects that can appear in different sizes. Both features, multi-

scale and oriented-detection, become necessary when the detection problem involves objects with 

irregular shapes and different sizes and aspect ratios.  
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In more detail, this section describes a two-stage arbitrarily-oriented detector: the first stage predicts 

locations for the objects of interest in the form of un-oriented bounding boxes, adopting a feature pyramid-

based approach to produce detections at different scales and so capture minor details if needed. The 

second stage implements a lightweight CNN that is used for regressing the parameters of the oriented 

bounding boxes better fitting the objects of interest that lie inside the un-oriented predictions produced 

by the first stage. 

 

  
(a) (b) 

Figure 2: Use of oriented bounding boxes for objects with different shapes, sizes and aspect ratios: (a) example of detection by means of 

unoriented bounding boxes, (b) example of more effective detections by means of oriented bounding boxes. 

The main contributions of this work are as follows:  

 We design a two-stage arbitrarily-oriented multi-category object detector, which we show can 

successfully operate in the intended scenarios;  

 We propose a feature pyramid-based network architecture and analyse several map fusion 

strategies;  

 The unoriented boxes regressor adopts a default boxes-based scheme using the output of a 

process clustering the training data to obtain high-quality priors and improve target localisation 

accuracy;  

 Oriented bounding boxes regression is achieved by means of a simple network;  

 The evaluation performed includes comparative studies on some important design choices. 

The rest of this section is organised as follows: Section 2.1 overviews the full network, while Section 2.2 

describes the multi-scale, orientation-unaware detector, Section 2.3 outlines the default boxes selection 

process and Section 2.4 details the network producing oriented bounding boxes; finally, Section 2.5 reports 

on the results of a number of experiments aiming at showing the performance of the full detector. 

 Detector overview 

The detector proposed in this work comprises two stages. The first stage is intended to regress unoriented 

bounding boxes by means of a variant of the Single-Shot MultiBox Detector (SSD). SSD is a one-stage object 

detection approach that makes use of the standard VGG-16 network as backbone though modified by 

replacing the last fully connected layers with the incorporation of additional convolutional layers (see (Liu, 

et al., 2016) for the details). In comparison with most detection algorithms based on R-CNN, such as 

(Girshick, 2015) and (Ren, He, Girshick, & Sun, 2015), SSD does not require any extra procedure to generate 
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proposals. Alternatively, a mechanism of prior boxes is used, from which offsets are regressed for enhanced 

localisation accuracy. On the other side, unlike R-CNN methods, detections are obtained at several scales 

from a number of layers of the backbone, namely conv4_3, fc7, conv8_2, conv9_2, conv10_2 and conv11_2. 

The corresponding feature maps are subsequently involved in the calculation of a multi-term loss function 

to regress the parameters of the bounding boxes (i.e. offsets relative to the prior boxes shape), and to 

obtain confidence values for the classes. To this end, predicted boxes have to be matched with true 

bounding boxes to train the detector, and only those positives with enough overlap contribute to the loss, 

while positives and negatives contribute to the classification loss (after a hard negative mining process to 

keep the positive vs negative samples ratio at 1:3). 

For the first stage of the detector, in this work, we follow the proposals-free approach of SSD together with 

the selection of a set of prior boxes, though with a number of differences: (a) the backbone consists in a 

pyramid of feature maps involving information at more scales than SSD, as depicted in Figure 5, to favour 

the detection of both large and small targets; (b) the pyramid involves a map fusion scheme that leads to 

the best performance among a total of four alternatives; and (c) the set of prior boxes are not arbitrarily 

hand-picked but the selection is guided by the training data, resulting from a clustering procedure taking 

the ground truth as input. The details can be found in Sections 2.2 and 2.3. 

The second stage of the detector consists in a specifically designed network trained to regress the 

parameters of the rotated bounding box maximally contained in the unoriented bounding boxes stemming 

from the first stage. A detailed description of this stage is given in Section 2.4. 

 
Figure 3: Parameterisation of oriented and unoriented bounding boxes: a (𝒅𝟏, 𝒅𝟐) pair can lead  

to two different oriented boxes, with heights 𝒉𝟏 and 𝒉𝟐. 

To finish, Figure 3 illustrates how bounding boxes are parametrised in the approach proposed in this 

section. For unoriented bounding boxes, we make use of the standard parameters, namely the box centre 

(𝑢𝑥 , 𝑢𝑦) and its width 𝑢𝑤 and height 𝑢ℎ. Regarding oriented bounding boxes, they are expressed in terms 

of the unoriented bounding box they are defined in, by means of intercepts (𝑑1, 𝑑2). As shown in Figure 3, 

these intercepts result from the intersection between the rotated box sides and the unrotated box sides. 

Since this parametrization can lead to two different rotated boxes, a third optional parameter ℎ can be 

included in the definition of the oriented bounding box to disambiguate between ℎ1 and ℎ2. 

 Feature Pyramid Single-Shot Multi-box Detector (FPSSD) 

SSD uses feature maps from different layers of the network to regress bounding boxes. More precisely, SSD 

adopts large-scale feature maps to detect small targets, and conversely uses small-scale feature maps to 

detect large targets. In this work, we additionally make use of the feature pyramid concept to fuse feature 
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maps from top layers with feature maps from bottom layers to obtain enhanced features containing both 

semantic information and detailed features, which is exploited to detect different scale targets. 

The idea of the feature pyramid originates from the image pyramid concept, which aims at being able to 

analyse an image at multiple scales by means of multi-scale sampling of the original image via e.g. Gaussian 

kernels. As assisted by a hierarchical CNN, a feature pyramid can be built in one single feed-forward pass 

that simultaneously calculates the multi-scale features of the input image. Hence, the feature pyramid can 

efficiently address the multi-scale problem with a relatively low cost. 

So far, several works have implemented the feature pyramid concept onto DCNNs (see (Li & Zhou, 

2017) and (Fu, Liu, Ranga, Tyagi, & Berg, 2017), among others). The four typical approaches for fusing the 

feature maps are overviewed in Figure 4. Figure 4(a) illustrates the most common strategy, FPN, which 

merges feature maps layer by layer by element-wise addition and performs detection from each 

scale/feature map. Another method is the lightweight fusion strategy named FSSD shown in Figure 4(b). In 

this case, features from different layers at different scales are concatenated together first and used next 

to generate a series of pyramid features. Lastly, the different feature maps are combined by the 

concatenation layer and sent to the loss function. Though this method is capable of saving computational 

costs as compared to method (a), the feature maps feeding the detector finally lack certain semantic 

information. Figure 4(c) illustrates FPSSD, the method proposed in this work, which employs a strategy 

identical to FPN to fuse the feature maps, but aims at reducing the computational cost by means of a 

concatenation layer that combines the different feature maps. Subsequently, the combined feature maps 

are fed into the detector. Lastly, Figure 4(d) depicts the strategy adopted in the original SSD. Among others, 

it shows that SSD does not integrate any feature fusion module, and thus it has a limited capability to 

capture simultaneously low-level details and high-level semantic data. 

 

 
 

          

Figure 4: Different strategies for fusing feature maps in a feature pyramid:  

(a) feature maps are fussed from top to bottom layer by layer; (b) a lightweight architecture that merges feature maps from top to 

bottom; (c) FPSSD;  

(d) original SSD approach, which uses feature maps from different layers separately. 

Figure 5(top) outlines the architecture of FPSSD. As can be observed, the feature maps are extracted from 

the conv4_3, fc7, conv6_2, conv7_2, conv8_2, and conv9_2 layers of the original SSD network (Liu, et al., 

2016). On the other side, deconvolution layers are utilised to enlarge the respective feature maps. We also 

make use of 1 × 1 convolutional layers, termed as lateral connections in (Lin, et al., 2017), to unify the 

output channels of all feature maps. Lastly, down-top layers integrate different scales and submit the result 

to the detector to predict the category and localisation of targets. 
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(a) (b) (c) (d) 

Figure 5: FPSSD: (top) architecture, (bottom) alternative implementations of the upsampling modules  

(Sum, Cat and Conv1×1 respectively denote pixel-wise sum, concatenation and 1×1 convolution). 

 Selection of (unoriented) Prior Boxes 

SSD predefines a total of 6 prior boxes per feature map location by imposing different size combinations 

(𝑤𝑘, ℎ𝑘) manually picked. Since, on the one hand, the shape of the bounding boxes to detect can vary 

significantly and, on the other hand, SSD regresses the predicted bounding boxes from the prior boxes, a 

proper selection of those prior boxes becomes crucial for achieving a high detection success; as already 

noted in (Redmon, Divvala, Girshick, & Farhadi, 2016), such a proper selection contributes to the stability 

of the underlying optimization process, converges faster and improves effectively the Intersection over 

Union (IOU) between predicted and true boxes. Hence, our object detector makes use of prior boxes 

selected automatically in accordance to the available data. 

In more detail, we run the well-known K-means algorithm over the bounding boxes belonging to the ground 

truth, using box width and height as the clustering features. Instead of the Euclidean distance, typically 

used by K-means implementations, we define IOU as a distance metric because we have observed better 

clustering results with the latter. The distance between a sample box 𝑏𝑖 and the cluster centroid 𝑐𝑗  is hence 

defined as: 

𝑑(𝑏𝑖 , 𝑐𝑗) = 1 − IOU(𝑏𝑖 , 𝑐𝑗) = 1 −
𝑏𝑖 ∩ 𝑐𝑗

𝑏𝑖 ∪ 𝑐𝑗
= 1 −

𝑜(𝑏𝑖 , 𝑐𝑗)

𝑎(𝑏𝑖) + 𝑎(𝑐𝑗) − 𝑜(𝑏𝑖 , 𝑐𝑗)
 

( 1 ) 

where 𝑜(⋅,⋅) denotes overlapping area and 𝑎(⋅) denotes area. 

Table 1 shows averages of the IOU metric (see Section 2.5.2) for hand-picked prior boxes and automatically 

selected boxes by clustering, and different amounts of prior boxes (for the hand-picked cases, we predefine 

the boxes similarly to SSD). We can see that 4 clusters automatically selected yield similar performance 

than 10 hand-picked prior boxes. This means that it is possible to propose automatically higher-quality and 

better parameterized prior boxes. As could be expected, the more clusters, the better is the performance 
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(the trend can be observed to continue for 7 or more prior boxes), although the number of clusters should 

not be high to keep reasonable the running time. 

Table 1: Mean IOU (mIOU) vs number of prior boxes and selection method. 

Approach no. prior boxes mIOU (%) 

Hand-Picked 4 35.93 

Hand-Picked 5 37.96 

Hand-Picked 6 42.75 

Hand-Picked 10 61.82 

Clustering 4 61.58 

Clustering 5 63.37 

Clustering 6 65.31 

 

 Regression of Oriented Bounding Boxes 

To regress the parameters of the rotated boxes, a lightweight convolutional network based on LeNet has 

been adopted. With regard to the original network, the rotated boxes (RBox) regression network exhibits 

several differences: (1) the input size is 63 × 63 after the incorporation of an additional convolutional layer 

at the beginning of the network, in order to avoid reducing the image to LeNet’s 28 × 28 input pixels and 

lose information; (2) batch normalization is used after each convolutional layer to speed up convergence 

during training (this has also been shown to decrease the effect of covariate shift from the hidden 

layers (Ioffe & Szegedy, 2015)); (3) since the bounding boxes parameters (𝑑1, 𝑑2, ℎ) range from 0 to 1, a 

sigmoid layer lies between the last fully connected layer and the loss layer; and (4) lastly, an Euclidean 

distance loss layer is used during regression: 

𝐿(𝑑, 𝑔) =
1

2𝑁
∑(𝑑1

𝑖 − 𝑔𝑑1

𝑖 )
2

𝑁

𝑖=1

+ (𝑑2
𝑖 − 𝑔𝑑2

𝑖 )
2

+ (ℎ𝑖 − 𝑔ℎ
𝑖 )

2
 

( 2 ) 

 

where 𝑑 = (𝑑1, 𝑑2, ℎ) denotes the predicted offsets and height, 𝑔 = (𝑔𝑑1
, 𝑔𝑑2

, 𝑔ℎ) represents the ground 

truth and 𝑁 is the size of the mini-batch. The architecture of the RBox regression network can be found in 

Figure 6. 

 

Figure 6: Architecture of the RBox regression network. 
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 Experimental Results and Discussion 

2.5.1. Experimental setup 

The FPSSD and RBox networks have been implemented using Caffe (Jia, et al., 2014). Referring particularly 

to FPSSD, the VGG-16 network is taken as the backbone, identically to the original SSD. Trainings and all 

experiments have been performed on a PC platform fitted with an Intel i9-9900K processor with 64Gb RAM 

and an Nvidia RTX 2080Ti GPU.  

The dataset employed for training comprises images from different vessels taken under different 

illumination conditions, viewpoints, etc. All the images have been resized to 512 × 512 pixels. As for 

training, we have adopted a multiple steps strategy, where the learning rate was set to 10−5 during the 

first 8000 iterations, the next 6000 iterations used a learning rate of 10−6, and the final 6000 iterations 

employed a learning rate of 10−7. The batch size was set to 10, which is the best configuration for the GPU 

involved in the experiments. We have employed SGD for network optimization, and the weight decay and 

the momentum were set to 0.001 and 0.9, respectively. As a compromise between accuracy and 

computation time, object detection was performed using six prior boxes whose features resulted from the 

clustering process described in Section 2.3. 

2.5.2. Assessment metrics 

We employ the following metrics for performance evaluation: 

 For both unoriented and oriented bounding boxes, we consider the Recall (R), the Precision (P) 

and the Average Precision (AP) measured as the area under the P-R curve for a set of pre-defined 

recall values (Everingham, et al., 2015). Detected bounding boxes with a confidence above 0.7 

have been considered as the set of predictions 𝑃 of the detector (as usual for object detection). 

 For the unoriented bounding boxes, we also consider the averaged IOU (AIOU): 

AIOU =
1

|𝑃|
∑ IOU

𝑏𝑗 ∈ 𝑃

(𝑏𝑗 , 𝑔𝑗) =
1

|𝑃|
∑

𝑏𝑗 ∩ 𝑔𝑗

𝑏𝑗 ∪ 𝑔𝑗
𝑏𝑗 ∈ 𝑃

 

( 3 ) 

where |𝑃| stands for the cardinality of set 𝑃, 𝑏𝑗  denotes a prediction and 𝑔𝑗 is the true bounding 

box with highest overlap with 𝑏𝑗. 

 To determine the performance of oriented detection, we also provide the averaged RBox IOU 

(ARIOU) as supplementary performance metrics (analogously to Equation ( 3 )). Unlike the case of 

unoriented bounding boxes, the shape of the intersection of two rotated bounding boxes turns 

out to be into a convex polygon. In general, the area 𝐴cp of such a polygon is given by: 

𝐴cp =
1

2
∑(𝑥𝑖𝑦𝑖+1 − 𝑥𝑖+1𝑦𝑖)

𝑛

𝑖=1

 [Shoelace Formula] 

where {(𝑥1, 𝑦1), … , (𝑥𝑛, 𝑦𝑛)}} are the coordinates of the polygon vertices arranged counter- 

clockwise, and (𝑥𝑛+1, 𝑦𝑛+1) = (𝑥1, 𝑦1). 

 To finish, in order to measure the accuracy of the parameters regressed, we also adopt the mean 

absolute error (MAE) for the regression targets considered, calculated as follows: 

MAE𝑡 =
1

|𝑃|
∑|𝑡𝑝 − 𝑡𝑔|

𝑃

 

where 𝑡𝑝 and 𝑡𝑔 respectively denote the predicted target value and the ground truth. 
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2.5.3. Regression results for unoriented bounding boxes 

In this section, we report on the performance obtained for unoriented bounding boxes detection. We start 

with an ablation study considering the effect of the lateral connections between layers of the top-down 

and down-top paths and the necessary map fusion approaches. We consider SSD 512 as a baseline and the 

alternatives that are enumerated in Figure 5 (bottom), which contemplate pixel-wise sum and 

concatenation for map fusion, and the use or not of 1 × 1 convolutional filters to unify the number of 

output channels from top to bottom layers. Results for different metrics are reported in Table 2. As can be 

observed, option (b) attains the largest performance in all cases. 

Table 2: Ablation study: effect of lateral connections and the feature map fusion approach. (Bold face denotes best.) 

Configuration Figure 5(bottom) mRec mPrec F𝟏 mAP 

SSD 512  0.8311 0.9434 0.8837 0.8218 

FPSSD 512 + Sum (a) 0.8241 0.9513 0.8831 0.8131 

FPSSD 512 + 1×1 conv + Sum (b) 0.9113 1.0000 0.9536 0.9091 

FPSSD 512 + 1×1 conv + Cat (c) 0.8264 0.9433 0.8810 0.8133 

FPSSD 512 + Cat (d) 0.8262 0.9563 0.8865 0.8172 

 

To finish, some qualitative results from a selection of images can be found in Figure 7. As can be noticed, 

FPSSD achieves competitive results, being particularly able to detect small areas affected by corrosion. 

 
Figure 7: Unoriented detection results for FPSSD and SSD. 

2.5.4. Regression results for oriented bounding boxes 

Though FPSSD leads to good performance for unoriented detection for the visual inspection task, for some 

elongated targets, either regularly-shaped or irregularly-shaped, the results of FPSSD can be inaccurate, 

apart from the fact that unoriented bounding boxes tend to include parts of other objects and even cover 

a large fraction of the image in order to fully contain certain objects of interest, as shown in Figure 7. This 

are the reasons why oriented bounding boxes are considered in this work. In this section, we analyse the 

performance of the RBox regression network described in Section 2.4. 

Table 3 shows the MAE for each regression target and two configurations: (a) two-target regression 

(𝑑1, 𝑑2) and (b) three-target regresssion (𝑑1, 𝑑2, ℎ). As can be observed, the MAE values for 𝑑1 and 𝑑2 for 

the two-target case are lower than the corresponding MAE values for the three-target case. Moreover, the 

average MAE of the two-target case is also lower than the average MAE for the three-target case. On the 
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other side, we have fine-tuned the last fully-connected layer of AlexNet (Krizhevsky, Sutskever, & Hinton, 

2012), i.e. we have only optimised the weights of the last fully-connected layer, the weights of the other 

layers have been frozen. We have also replaced the softmax layer by a sigmoid layer and used the resulting 

model as a baseline to compare with. Table 3 shows that, on average, the fine-tuned AlexNet produces 

worse predictions than the RBox network. 

Table 3: MAE values for the regression targets considered by the RBox network in comparison with AlexNet. (Bold face denotes best.) 

Approach 𝒅𝟏 𝒅𝟐 𝒉 average 

RBox (2-target) 0.1556 0.1612 - 0.1584 

RBox (3-target) 0.3151 0.3105 0.0889 0.2381 

AlexNet (2-target) 0.1722 0.1915 - 0.1818 

AlexNet (3-target) 0.2722 0.3744 0.2501 0.2989 

 

Figure 8 shows some examples of detections of rotated bounding boxes for two- and three-target 

regression. In the pictures, the red points correspond to the 𝑑1 and 𝑑2 intercepts, while the green line 

represents the third regression target ℎ. The black line just connects the red points to show the predicted 

orientation of the object detected. It can be observed that the black lines in the first column (using two-

target regression) adhere better to the orientation of the objects than the detections of the second column 

(using three-target regression); the two-target RBox network outperforms as well the fine-tuned version 

of AlexNet. 

   (a) RBox, 2-target    (b) RBox, 3-target  (c) AlexNet, 2-target  (d) AlexNet, 3-target 

 
Figure 8: RBox regression results: (a) RBox network for 2 regression targets, (b) RBox network for 3 regression targets, (c) AlexNet for 2 

regression targets, (d) AlexNet for 3 regression targets. (The red dots correspond to regression targets 𝒅𝟏 and 𝒅𝟐 ,  

while the green line represents the regression target h.) 

At last, we connect the FPSSD and the RBox networks to infer oriented detections end to end, i.e. the input 

of the RBox regression network is the prediction of FPSSD. In this regard, notice that, because the output 

of FPSSD is a prediction, it could be slightly displaced with regard to the true object location (which is what 

has been used for training), increasing hence the challenge of estimating correctly the object orientation. 

Table 4 compares, by means of ARIOU values, the two-target and three-target RBox regression networks 

with TextBoxes++ (Liao, Shi, & Bai, 2018), an arbitrarily-oriented text detector also based on SSD, which we 

have fine-tuned for the visual inspection task and employed as a baseline for this experiment. TextBoxes++ 

is combined with a neural network-based text recognition module which, for obvious reasons, is not 

involved in this experiment. On the other side, as already mentioned, the two-target regression variant of 
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RBox gives rise to two predictions (as described in Figure 3). For this case, we always select the largest 

oriented box. 

Table 4: ARIOU values for the RBox network. (Bold face denotes best.) 

RBox (2-target) RBox (3-target) TextBoxes++ 
0.5932 0.5419 0.4615 

 

     (a) FPSSD + RBox, 2-target     (b) FPSSD + RBox, 3-target          (c) TextBoxes++ 

 
Figure 9: Examples of oriented detections for two- and three-target regression and TextBoxes++ 

Figure 9 shows final detection results for the full oriented-detection solution. For two-target regression, 

we show two oriented boxes, in red and in green, corresponding to the two possible solutions for every 

(𝑑1, 𝑑2) pair. As already observed at a quantitative level, the RBox regression network for two-target 

regression gives rise to more accurate detections than TextBoxes++. Although the three-target regression 

approach gives rise to a single solution, it is not as accurate as the two-target variant. As for TextBoxes++, 



BugWright2               Deliverable D3.4 
Grant Agreement No. 871260      Dissemination level: PU 

Page 15 version 1 status: released 

its performance has neither resulted to be above the other approaches (despite the network has effectively 

converged while being fine-tuned for the two datasets). 

III. Semantic segmentation-based approach 

Image segmentation is a classical problem in computer vision aiming at distinguishing meaningful units in 

processed images. To this end, image pixels are grouped into regions that on many occasions are expected 

to correspond to the scene object projections. One step further identifies each unit as belonging to a 

particular class among a set of object classes to be recognised, giving rise to the Multi-Class Semantic 

Segmentation (MCSS) problem. From classical methods (e.g. region growing (Gonzalez & Woods, 2018)) to 

more robust methods (e.g. level-set (Wang, Ma, & Zhu, 2021) and graph-cut (Boykov & Funka-Lea, 2006)), 

various techniques have been proposed to achieve automatic image segmentation in a wide range of 

problems. Nevertheless, it has not been until recently that the performance of image segmentation 

algorithms has attained truly competitive levels, and this has been mostly thanks to the power of machine 

learning-based methodologies. 

Regarding DCNN-based image segmentation, (Guo, Liu, Georgiou, & Lew, 2018) distinguish among three 

categories of MCSS approaches in accordance to the methodology adopted while dealing with the input 

images (and correspondingly the required network structure): region-based semantic segmentation, 

semantic segmentation based on Fully Convolutional Networks (FCN) and Weakly-Supervised semantic 

segmentation (WSSS). While the former follows a segmentation using recognition pipeline, which first 

detects free-form image regions, and next describes and classifies them, the second approach adopts a 

pixel-to-pixel map learning strategy as key idea without resorting to the image region concept, and, lastly, 

WSSS methods focus on achieving a performance level similar to that of Fully-Supervised methods (FSSS) 

but with a weaker labelling of the training image set, i.e. less spatially-informative annotations than the 

pixel level, to simplify the generation of ground truth data. It is true that powerful interactive tools have 

been developed for annotating images at the pixel level, which, in particular, just require that the annotator 

draws a minimal polygon surrounding the targets (see e.g. the open annotation tool by the MIT (Wada, 

2016)). However, it still takes a few minutes on average to label the target areas for every picture (e.g. 

around 10 minutes on average for MS COCO labellers, as described by (Lin, et al., 2014)), which makes 

WSSS methods interesting by themselves and actually quite convenient in general. In this section, we focus 

on this last class of methods and propose a novel WSSS strategy based on a new loss function combining 

several terms to counteract the simplicity of the annotations. 

WSSS methods are characterised, among others, by the sort of weak annotation that is assumed. In this 

regard, (Chan, Hosseini, & Plataniotis, 2020) highlight several weak annotation methodologies, namely 

bounding boxes, scribbles, image points and image-level labels (see Figure 10 for an illustration of all of 

them). In this work, we adopt a scribble-based methodology from which training masks are derived to 

propagate the category information from the labelled pixels to the unlabelled pixels during network 

training. 

The main contributions of this work are summarised as follows: 

 A new loss function 𝐿 comprising several partial cross entropy terms is developed to account for 

the vagueness of the annotations and the inherent noise of the training masks that are derived 
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from them. This function includes a class centroids-based loss term, named as the Centroid Loss, 

which induces a clustering process within the semantic segmentation approach. 

 Another term of 𝐿 is defined through a Mean Squared Error (MSE) loss that cooperates with the 

other partial cross-entropy losses to refine the segmentation results. 

 The Centroid Loss is embedded over a particular implementation of Attention U-Net (Oktay, et al., 

2018). 

 

    
(a) (b) (c) (d) 

Figure 10: Examples of weak annotations, from more to less informative: (a) bounding boxes, (b) scribbles,  

(c) point-level labels, (d) image-level labels. 

The rest of this section is organised as follows: Section 3.1 describes the weakly-supervised methodology 

developed in this work; Section 3.2 discusses on the weak annotations adopted; Section 3.3 details the 

architecture of the network; Sections 3.4, 3.5 and 3.6 presents the different terms of the loss function; 

finally, Section 3.7 reports on the results of a number of experiments aiming at showing the performance 

of our approach from different points of view. 

 Methodology 

Figure 11(a) illustrates fully supervised semantic segmentation approaches based on DCNN, which, 

applying a pixel-wise training strategy, try to make network predictions resemble the full labelling as much 

as possible, thus achieving good segmentation performance levels in general. By design, this kind of 

approach ignores the fact that pixels of the same category tend to be similar to their adjacent pixels. This 

similarity can, however, be exploited when addressing the WSSS problem by propagating the known pixel 

categories towards unlabelled pixels. In this respect, several works reliant on pixel-similarity to train the 

WSSS network can be found in the literature: e.g. a dense Conditional Random Field (CRF) is used 

in (Papandreou, Chen, Murphy, & Yuille, 2015), the GraphCut approach is adopted in (Zhao, Liang, & Wei, 

2018), and superpixels are used in ScribbleSup (Lin, Dai, Jia, He, & Sun, 2016). 
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(a) (b) 

Figure 11: Illustration of (a) full supervision and (b) the weakly-supervised approach for semantic segmentation proposed in this work: (a) 

all pixels are labelled to make the prediction [bottom layer of the drawing] resemble the ground truth [top layer of the drawing] as much 

as possible after pixel-wise training; (b) to solve the WSSS problem, the category information from the incomplete ground truth, i.e. the 

weak annotations, is propagated towards the rest of pixels making use of pixel similarity and minimizing distances to class centroids 

derived from the weak annotations. 

Inspired by the aforementioned, in this section, we propose a semantic segmentation approach using 

scribble annotations and a specific loss function intended to compensate for missing labels and errors in 

the training masks. To this end, class centroids determined from pixels coinciding with the scribbles, whose 

labelling is actually the ground truth of the problem, are used in the loss function to guide the training of 

the network so as to obtain improved segmentation outcomes. The process is illustrated in Figure 11(b). 

Furthermore, similarly to ScribbleSup (Lin, Dai, Jia, He, & Sun, 2016), we also combine superpixels and 

scribble annotations to propagate category information and generate pseudo-masks as segmentation 

proposals, thus making the network converge fast and achieve competitive performance. By way of 

example, Figure 12(b) and (c) show, respectively, the scribble annotations and the superpixels-based 

segmentations obtained for one of the images of the training dataset. The corresponding pseudo-masks, 

containing more annotated pixels than the scribbles, are shown in Figure 12(d). As can be observed, not all 

pixels of the pseudo-masks are correctly labelled, which may affect segmentation performance. It is 

because of this fact that we incorporate the Centroid Loss and a normalized MSE terms into the full loss 

function. 

    
(a) (b) (c) (d) 

Figure 12: Weak annotation and propagation example: (a) original images; (b) scribbles superimposed over the original image; (c) scribbles 

superimposed over the superpixels segmentation result; (d) resulting pseudo-masks. Regarding the scribble annotations: red and green 

scribbles respectively denote corrosion and background. As for the pseudo-masks: red, black and green pixels respectively denote 

corrosion, background and unlabelled pixels. 
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The remaining methodological details are given along the next sections: we begin with the way how weak 

annotations are handled and how the pseudo-masks are obtained in Section 3.2, while the architecture of 

the network is described in Section 3.3 and the different loss terms are detailed and discussed in Sections 

3.4 (partial Cross-Entropy loss, 𝐿pCE), 3.5 (Centroid Loss, 𝐿cen) and 3.6 (normalized MSE-term, 𝐿mse, and the 

full loss function 𝐿). 

 Weak Annotations and Pseudo-Masks Generation 

As already said, Figure 12(b) shows an example of scribble annotations for the visual inspection case. 

Because scribbles represent only a few pixels, the segmentation performance that the network can be 

expected to achieve will be far from satisfactory for any task that is considered. To enhance the network 

performance, we combine the scribbles with an oversegmentation of the image to generate pseudo-masks 

as segmentation proposals for training. For the oversegmentation, we make use of the Adaptive-SLIC 

(SLICO) algorithm (Achanta, et al., 2012), requesting enough superpixels so as not to mix different classes 

in the same superpixel. By way of illustration, Figure 12(c) shows an oversegmentation in 50 superpixels. 

Next, those pixels belonging to a superpixel that intersects with a scribble are labelled with the same class 

as the scribble, as shown in Figure 12(d). In Figure 12(d), the black pixels represent the background, the 

red pixels indicate corrosion, and the green pixels denote unlabelled pixels.  

 Network Architecture 

In this work, we adopt U-Net (Ronneberger, Fischer, & Brox, 2015) as the base network architecture. As it 

is well known, U-Net evolves from the fully convolutional neural network concept and consists of a 

contracting path followed by an expansive path. It was developed for biomedical image segmentation, 

though it has been shown to exhibit good performance in general for natural images even for small training 

sets. Furthermore, we also embed Attention Gates (AG) in U-Net, similarly to Attention U-Net (AUN) 

(Oktay, et al., 2018). These attention modules have been widely used in Natural Language Processing (NLP), 

e.g. (Clark, Khandelwal, Levy, & Manning, 2019). Other works related with image segmentation, e.g. (Sinha 

& Dolz, 2021), have introduced them for enhanced performance. In our case, AGs are integrated into the 

decoding part of U-Net to improve its ability to segment small targets. 

For completeness, we include in Figure 13 a schematic about the operation of the AG that we make use 

of in this work, which, in our case, implements the series of operations described below: 

(𝑥𝑖,𝑐
𝑙 )

′
= 𝛼𝑖

𝑙𝑥𝑖,𝑐
𝑙  

( 4 ) 

𝛼𝑖
𝑙 =  𝜎2 (𝑊𝜙

𝑇 (𝜎1(𝑊𝑥
𝑇𝑥𝑖

𝑙 + 𝑊𝑔
𝑇𝑔𝑖 + 𝑏𝑔)) + 𝑏𝜙) 

where the feature-map 𝑥𝑖
𝑙 ∈ ℝ𝐹𝑙 is obtained at the output of layer 𝑙 for pixel 𝑖, 𝑐 denotes a channel in 𝑥𝑖,𝑐

𝑙 , 

𝐹𝑙 is the number of feature maps at that layer, the gating vector 𝑔𝑖 is used for each pixel 𝑖 to determine 

focus regions and is such that 𝑔𝑖 ∈ ℝ𝐹𝑙 (after up-sampling the input from the lower layer), 𝑊𝑔 ∈ ℝ𝐹𝑙×1, 

𝑊𝑥 ∈ 𝑅𝐹𝑙×1, and 𝑊𝜙 ∈ 𝑅1×1 are linear mappings, while 𝑏𝑔 ∈ ℝ and 𝑏𝜙 ∈ ℝ denote bias terms, 𝜎1 and 𝜎2 

respectively represent the ReLU and the sigmoid activation functions, 𝛼𝑖
𝑙 ∈ [0,1] are the resulting attention 

coefficients, and 𝛷att = {𝑊𝑔, 𝑊𝑥, 𝑏𝑔; 𝑊𝜙, 𝑏𝜙} is the set of parameters of the AG. 
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Figure 13: Schematic diagram of an Attention Gate (AG). 𝑁 is the size of the mini-batch. 

The attention coefficients 𝛼𝑖 are intended to identify salient image regions and discard feature responses 

so as to preserve only the activations relevant to the specific task. In (Hu, Shen, & Sun, 2018), the Squeeze-

and-Excitation (SE) block obtains attention weights in channels for filter selection. In our approach, the AGs 

involved calculate attention weights at the spatial level. 

As shown in Figure 14, AGs are fed by two input tensors, one from the encoder side of U-Net and the other 

from the decoder side, respectively 𝑥 and 𝑔 in Figure 13. With the AG approach, spatial regions are selected 

on the basis of both the activations 𝑥 and the contextual information provided by the gating signal 𝑔 which 

is collected from a coarser scale. The contextual information carried by the gating vector 𝑔 is hence used 

to highlight salient features that are passed through the skip connections. In our case, 𝑔 enters the AG after 

an up-sampling operation that makes 𝑔 and 𝑥 have compatible shapes (see Figure 13). 

Apart from the particularities of the AG that we use, which have been described above, another difference 

with the original AUN is the sub-network that we attach to the main segmentation network, as can be 

observed from the network architecture that is shown in Figure 14. This sub-network is intended to predict 

class centroids on the basis of the scribbles that are available in the image, with the aim of improving the 

training of the main network from the possibly noisy pseudo-masks, and hence achieve a higher level of 

segmentation performance. Consequently, during training: (1) our network handles two sorts of ground 

truth, namely scribble annotations 𝑌scr to train the attached sub-network for proper centroid predictions, 

and the pseudo-masks 𝑌seg for image segmentation; and (2) the augmented network yields two outputs, a 

set of centroids 𝑃cen and the segmentation of the image 𝑃seg (while during inference only the segmentation 

output 𝑃seg is relevant). Predicted cluster centroids contribute to the Centroid Loss term 𝐿cen (described in 

Section 3.5) of the full loss function 𝐿, which comprises two more terms (as described in Section 3.6). 

Thanks to the design of 𝐿, the full network –i.e. the AUN for semantic segmentation and the sub-net for 

centroids prediction– is trained through a joint training strategy following an end-to-end learning model. 

During training, the optimization of 𝐿cen induces updates in the main network weights via back-propagation 

that are intended to lead to enhanced training and therefore produce better segmentations. 
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Figure 14: Block diagram of the Centroids AUN model. Size decreases gradually by a factor of 2 at each scale in the encoding part and 

increases by the same factor in the decoding part. In the latter, AGs are used to help the network focus on the areas of high-response in 

the feature maps. The Conv Skip block is the skip connection of ResNet (He, Zhang, Ren, & Sun, 2016). The sub-network at the lower part 

of the diagram is intended to predict class centroids. In the drawing, 𝐶 denotes the number of classes  

and 𝑀 is the dimension of the class centroids. 

As can be observed, the centroids prediction sub-net is embedded into the intermediate part of the 

network, being fed by the last layer of the encoder side of our AUN. As shown in Figure 14, this sub-net 

consists of three blocks, each of which comprises a fully connected layer, a batch-normalization layer, and 

a third layer of ReLU activation functions. The shape of 𝑃cen is 𝐶 × 𝑀, where 𝐶 is the number of categories 

and 𝑀 denotes the dimension of the feature space where the class centroids are defined. In our approach, 

centroid features are defined from the softmax layer of the AUN, and hence comprises 𝐶 components, 

though we foresee to combine them with 𝐾 additional features from the classes, which are incorporated 

externally to the operation of the network, and hence 𝑀 = 𝐶 + 𝐾. On the other side, the shape of 𝑃seg is 

𝐶 × 𝑊 × 𝐻, where (𝐻, 𝑊) is the size of the input image. 

 Partial Cross-Entropy Loss 

Given a C-class problem and a training set Ω, comprising a subset ΩL of labelled pixels and a subset ΩU of 

unlabelled pixels, the Partial Cross-Entropy Loss 𝐿pCE, widely used for WSSS, computes the cross-entropy 

only for labelled pixels 𝑝 ∈ ΩL, ignoring 𝑝 ∈ ΩU: 
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𝐿pCE = ∑ ∑ −

𝑝∈𝛺𝐿
(1)

𝐶

𝑐=1

𝑦𝑔(𝑝),𝑐 log 𝑦𝑠(𝑝),𝑐 

( 5 ) 

where 𝑦𝑔(𝑝),𝑐 ∈ 0,1 and 𝑦𝑠(𝑝),𝑐 ∈ [0,1] represent respectively the ground truth and the segmentation 

output. In our case, and for 𝐿pCE, ΩL
(1)

 is defined as the pixels labelled in the pseudo-masks (hence, pixels 

from superpixels not intersecting with any scribble belong to ΩU and are not used by the previous loss 

term. Hence, 𝑦𝑔(𝑝),𝑐 refers to the pseudo-masks, i.e. 𝑌seg, while 𝑦𝑠(𝑝),𝑐 is the prediction, i.e. 𝑃seg, as supplied 

by the softmax final network layer. 

 Centroid Loss 

As can be easily foreseen, when the network is trained using the pseudo-masks, the segmentation 

performance depends on how accurate the pseudo-masks are and hence on the quality of superpixels, i.e. 

how they adhere to object boundaries and avoid mixing classes. The Centroid Loss function is introduced 

in this section for the purpose of compensating a dependence of this kind and improving the quality of the 

segmentation output. 

In more detail, we express the Centroid Loss term 𝐿cen as another partial cross-entropy loss: 

𝐿cen = ∑ ∑ −

𝑝∈𝛺𝐿
(2)

𝐶

𝑐=1

𝑦𝑔(𝑝),𝑐
∗  log 𝑦𝑠(𝑝),𝑐

∗  

( 6 ) 

defining in this case: 

 𝛺𝐿
(2)

 as the set of pixels coinciding with the scribbles, 

 𝑦𝑔(𝑝),𝑐
∗  as the corresponding labelling, and 

𝑦𝑠(𝑝),𝑐
∗ =

exp(−𝑑𝑝,𝑐)

∑ exp𝐶
𝑐′=1 (−𝑑𝑝,𝑐′)

𝑑𝑝,𝑐 =
||𝑓𝑝 − 𝜇𝑐||

2

2

∑ ||𝑓𝑝 − 𝜇𝑐′||
2

2
𝐶
𝑐′=1

 

( 7 ) 

where: (1) 𝑓𝑝 is the feature vector associated to pixel 𝑝 and (2) 𝜇𝑐 denotes the centroid predicted for class 

𝑐, i.e. 𝜇𝑐 ∈ 𝑃cen. 𝑓𝑝 is built from the section of the softmax layer of the main network corresponding to pixel 

𝑝, though 𝑓𝑝 can be extended with the incorporation of additional external features, as already mentioned. 

This link between 𝐿pCE and 𝐿cen through the softmax layer makes both terms decrease through the joint 

optimization, in the sense that for a reduction in 𝐿cen to take place, and hence in the full loss 𝐿, also 𝐿pCE 

has to decrease by better predicting the class of the pixels involved. The additional features that can be 

incorporated in 𝑓𝑝 try to introduce information from the classes, e.g. predominant colour, to guide even 

more the optimization. 
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In practice, this loss term pushes pixel class predictions towards, ideally, a subset of the corners of the C-

dimensional hypercube, in accordance with the scribbles, i.e. the available ground truth. Some similarity 

can be certainly established with the K-means algorithm. Briefly speaking, K-means iteratively calculates a 

set of centroids for the considered number of clusters/classes, and associates the samples to the closest 

cluster in feature space, thus minimizing the intra-class variance until convergence. Some DCNN-based 

clustering approaches reformulate K-means as a neural network optimizing the intra-class variance loss by 

means of a back-propagation-style scheme (Peng, Tsang, Zhou, & Zhu, 2018). Differently from the latter, in 

this work, 𝐿cen reformulates the unsupervised process of minimizing the distances from samples to 

centroids into a supervised process since the clustering takes place around the true classes defined by the 

labelling of the scribbles 𝑦𝑔(𝑝),𝑐
∗  and the extra information that may be incorporated. 

 Full Loss Function 

Since 𝐿pCE applies only to pixels labelled in the pseudo-mask and 𝐿cen is also restricted to a subset of image 

pixels, namely the pixels coinciding with the scribbles, we add a third loss term in the form of a normalized 

MSE loss 𝐿mse to behave as a regularization term that involves all pixels for which a class label must be 

predicted 𝛺𝐿
(3)

, i.e. the full image. This term calculates the normalized distances between the segmentation 

result for every pixel and its corresponding centroid: 

𝐿mse =
∑ 𝑑𝑝,𝑐(𝑝)𝑝∈𝛺𝐿

(3)

|𝛺𝐿
(3)

|
 

( 8 ) 

where |𝒜| stands for the cardinality of set 𝒜, and 𝑑𝑝,𝑐(𝑝) is as defined by equation ( 7 ), with 𝑐(𝑝) as the 

class prediction for pixel 𝑝 (and 𝜇𝑐(𝑝) the corresponding predicted centroid), taken from the softmax layer. 

Finally, the complete loss function is given by 

𝐿 = 𝐿pCE + 𝜆cen𝐿cen + 𝜆mse𝐿mse 

( 9 ) 

where 𝜆cen and 𝜆mse are trade-off constants. 

 Experimental Results and Discussion 

In this section, we report on the results obtained for our WSSS approach. For a start, Sections 3.7.1 - 3.7.3 

describe the experimental setup. Next, in Section 3.7.4 we discuss about the feature space where the 

Centroid Loss is defined and about its relationship with the weak annotations, while Section 3.7.5 evaluates 

the effect on the segmentation performance of several combinations of the terms of the loss function 𝐿, 

and Section 3.7.6 analyses the impact of weak annotations and their propagation. Subsequently, our 

approach is compared against two previously proposed methods in Section 3.7.7. To finish, we address 

final tuning and show segmentation results, for qualitative evaluation purposes, for some images of both 

application cases in Section 3.7.8. 
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3.7.1. Experimental setup 

For a start, the dataset employed for training comprises images from different vessels taken under different 

illumination conditions, viewpoints, etc. Besides, it has been augmented with rotations and scaled versions 

of the original images together with random croppings, to increase the diversity of the set. Finally, as 

already explained, the ground truth comprises scribbles and pseudo-masks (generated in accordance to 

the process described in Section 3.2). By way of illustration, Figure 15 shows some examples of weak 

annotations with different settings as for the width of the scribbles and the number of superpixels used for 

generating the pseudo-masks. 

    
2 5 10 20 

    
full mask 30 50 80 

Figure 15: Examples of weak annotations and their propagation: (1st row) examples of scribble annotations of different widths, namely, 

from left to right, 2, 5, 10 and 20 pixels; (2nd row) the leftmost image shows the fully supervised ground truth, while the remaining images 

are examples of pseudo-masks generated from 20-pixel scribbles and for different amounts of superpixels, namely 30, 50, and 80, for the 

image of Figure 12 and, hence, for the visual inspection and the quality control application cases.  

(The colour code is the same as for Figure 12.) 

As well as for the object detection approach described in Section II, all experiments have been performed 

on a PC fitted with an NVIDIA GeForce RTX 2080 Ti GPU, a 2.9GHz 12-core CPU (Intel i9-9900K) with 32 GB 

RAM, and Ubuntu 64-bit. The batch size has been 8 for all experiments and the size of the input image has 

been 320 × 320 pixels, since this has turned out to be the best configuration for the aforementioned GPU. 

As already mentioned, the AUN for semantic segmentation and the sub-net for centroid prediction are 

jointly trained following an end-to-end learning model. The network weights are initialized by means of the 

Kaiming method (He, Zhang, Ren, & Sun, 2015), and they are updated using a 10−4 learning rate for 200 

epochs using the ADAM optimizer. 

Best results have been obtained for the balance parameters 𝜆cen and 𝜆mse set to 1. 
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3.7.2. Evaluation metrics 

For quantitative evaluation of our approach, we consider the following metrics: 

• The mean Intersection Over Union (mIOU), which can be formally stated as follows (see e.g. (Long, 

Shelhamer, & Darrell, 2015)):  

Given 𝑛𝑖𝑗 as the number of pixels of class 𝑖 that fall into class 𝑗, for a total of 𝐶 different classes 

mIOU =
1

𝐶
∑

𝑛𝑖𝑖

∑ 𝑛𝑖𝑗𝑗 + ∑ 𝑛𝑗𝑖𝑗 − 𝑛𝑖𝑖
𝑖

 . 

( 10 ) 

• The mean Recall and mean Precision are also calculated to evaluate the segmentation 

performance for all classes. True Positive (TP), False Positive (FP) and False Negative (FN) samples 

are determined from the segmentation results and the ground truth. Using a macro-averaging 

approach (Zhang & Zhou, 2014), the mean Recall (mRec) and mean Precision (mPrec) are 

expressed as follows: 

 

mRec =
1

𝐶
(∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑁𝑖
𝑖

) =
1

𝐶
(∑

𝑇𝑃𝑖

𝑇𝑖
𝑖

)

mPrec =
1

𝐶
(∑

𝑇𝑃𝑖

𝑇𝑃𝑖 + 𝐹𝑃𝑖
𝑖

) =
1

𝐶
(∑

𝑇𝑃𝑖

𝑃𝑖
𝑖

)

 

( 11 ) 

where 𝑇𝑃𝑖, 𝐹𝑃𝑖 and 𝐹𝑁𝑖 are, respectively, the true positives, false positives and false negatives for 

class 𝑖, and 𝑇𝑖 and 𝑃𝑖 are, respectively, the number of positives in the ground truth and the number 

of positive predictions, both for class 𝑖. From now on, to shorten the notation, when we refer to 

precision and recall, it must be understood that we are actually referring to mean precision and 

mean recall. 

• The F1 score as the harmonic mean of precision and recall: 

𝐹1 =
2 ⋅ mPrec ⋅ mRec

mPrec + mRec
 

( 12 ) 

In all experiments, we make use of fully supervised masks/ground truth for both datasets in order to be 

able to report quantitative measurements about the segmentation performance. This ground truth has 

been manually generated only for this purpose, it has been used for training only when referring to the 

performance of the fully-supervised approach, for comparison purposes between the fully- and weakly-

supervised solutions. 

To finish, in a number of experiments we also report on the quality of the pseudo-masks, so that the 

segmentation performance reported can be correctly valued. To this end, we calculate a weak mIOU 

(wmIOU) using equation ( 10 ) between the pseudo- and the fully-supervised masks involved. 

3.7.3. Overall view of the experiments 

The experiments that are going to be discussed along the next sections consider different configurations 

for the different elements that are involved in our semantic segmentation approach. These 

configurations, which are enumerated in Table 5, involve: 
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• different widths of the scribble annotations used as ground truth, namely 2, 5, 10 and 20 pixels, 

• different amounts of superpixels for generating the pseudo-masks, namely 30, 50 and 80, 

• two ways of defining the feature space for the class centroids: from exclusively the softmax layer 

of AUN and combining those features with other features from the classes. 

Table 5: Labels for the different experiments performed, varying the width of scribbles, the number of superpixels employed for 

generating the pseudo-masks, and the terms involved in the loss function employed during training. SMX stands for softmax. 

Configuration Label 
Scribbles 

width 
Number of 
superpixels 

Centroid features Supervision Loss function 

lower baseline 
(G1) 

E-SCR2 2 - - 

only scribbles 𝐿pCE 
E-SCR5 5 - - 

E-SCR10 10 - - 

E-SCR20 20 - - 

E-SCR20-SUP30 20 30 - 

pseudo-masks 𝐿pCE E-SCR20-SUP50 20 50 - 

E-SCR20-SUP80 20 80 - 

G2 / G3 

E-SCR2-N 2 - SMX 

only scribbles 𝐿pCE + 𝐿cen [+𝐿mse] 

E-SCR2-NRGB 2 - SMX & norm. RGB 

E-SCR5-N 5 - SMX 

E-SCR5-NRGB 5 - SMX & norm. RGB 

E-SCR10-N 10 - SMX 

E-SCR10-NRGB 10 - SMX & norm. RGB 

E-SCR20-N 20 - SMX 

E-SCR20-NRGB 20 - SMX & norm. RGB 

E-SCR20-SUP30-N 20 30 SMX 

pseudo-masks 𝐿pCE + 𝐿cen [+𝐿mse] 

E-SCR20-SUP30-NRGB 20 30 SMX & norm. RGB 

E-SCR20-SUP50-N 20 50 SMX 

E-SCR20-SUP50-NRGB 20 50 SMX & norm. RGB 

E-SCR20-SUP80-N 20 80 SMX 

E-SCR20-SUP80-NRGB 20 80 SMX & norm. RGB 

upper baseline E-FULL - - - full mask 𝐿CE 

 

Notice that the first rows of Table 5 refer to experiments where the loss function used for training is just 

the partial cross-entropy, as described in equation ( 5 ), and therefore can be taken as a lower baseline 

method. The upper baseline would correspond to the configuration using full masks and the cross entropy 

loss 𝐿CE for training, i.e. full supervised semantic segmentation, which can also be found in Table 5 as the 

last row. 

Apart from the aforementioned variations, we also analyse the effect of several combinations of the loss 

function terms, as described in equation ( 9 ), defining three groups of experiments: Group 1 (G1), which 

indicates that the network is trained by means of only 𝐿pCE, and hence would also coincide with the lower 

baseline; Group 2 (G2), which denotes that the network is trained by means of the combination of 𝐿pCE and 

𝐿cen; and Group 3 (G3), for which the network is trained using the full loss function as described in equation 

( 9 ). 
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Finally, we compare our segmentation approach with two other alternative approaches also aimed at 

solving the WSSS problem through a modified loss function. These loss functions are the Constrained-size 

Loss (𝐿size) (Kervadec, et al., 2019) and the Seed, Expand, and Constrain (SEC) Loss (𝐿sec) (Kolesnikov & 

Lampert, 2016): 

𝐿size = 𝐿pCE + 𝜆size𝐿𝒞(𝑉𝑆)

𝐿sec = 𝐿seed + 𝐿expand + 𝐿constrain
 

( 13 ) 

On the one hand, 𝜆size for the 𝐿𝒞(𝑉𝑆) term is set to 10−3. On the other hand, regarding 𝐿sec, it consists of 

three terms, the seed loss 𝐿seed, the expand loss 𝐿expand, and the constrain loss 𝐿constrain. In our case, we 

feed 𝐿seed from the scribble annotations, while, regarding 𝐿expand and 𝐿constrain, we adopt the same 

configuration as in the original work. 

3.7.4. About the centroid loss feature space and the weak annotations 

Given the relevance that colour features can have in image semantic segmentation performance (Liu, Deng, 

& Yang, 2018), the experiments reported in this section consider the incorporation of colour data from the 

classes into the calculation and minimization of the Centroid and the MSE loss functions, 𝐿cen and 𝐿mse. 

More specifically, we adopt a simple strategy by making use of normalized RGB features 1: 

nRGB𝑝 =
1

𝑅𝑝 + 𝐺𝑝 + 𝐵𝑝
(𝑅𝑝, 𝐺𝑝, 𝐵𝑝) 

( 14 ) 

As mentioned in Section 3.3, the shape of 𝑃𝑐𝑒𝑛 is 𝐶 × 𝑀, where 𝑀 = 𝐶 + 𝐾, and 𝐾 is the number of 

additional features from the classes that we incorporate into the network optimization problem. Therefore, 

in our case, 𝐾 = 3. Of course, more sophisticated hand-crafted features can be incorporated into the 

process, though the idea of this experiment has been to make use of simple features. 

Table 6 and Table 7 evaluate the performance of our approach for different combinations of loss terms, 

for the two centroid feature spaces outlined before, and also depending on the kind of weak annotation 

that is employed as ground truth and their main feature value, i.e. width for scribbles and number of 

superpixels for pseudo-masks. Besides, we consider two possibilities of producing the final labelling: from 

the output of the segmentation network and from the clustering deriving from the predicted class 

centroids, i.e. label each pixel with the class label of the closest centroid; from now on, to simplify the 

discussion despite the language abuse, we will refer to the latter kind of output as that resulting from 

clustering.  

As can be observed in Table 6, segmentation and clustering mIOU for experiments E-SCR*-NRGB is lower 

than the mIOU for experiments E-SCR*-N, with a large gap in performance in a number of cases, what 

suggests that the RGB features actually do not contribute —rather the opposite— on improving 

segmentation performance when scribble annotations alone are used as supervision information for the 

visual inspection dataset. 

 

                                                             
1 If 𝑅𝑝 = 𝐺𝑝 = 𝐵𝑝 = 0, then nRGB𝑝 = (0,0,0). 
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As for Table 7, contrary to the results shown in Table 6, the performance that can be observed from 

experiments E-SCR20-SUP*-NRGB results to be similar to that of experiments E-SCR20-SUP*-N. 

Additionally, the mIOU of some experiments where the integrated features, i.e. softmax and colour, are 

used is even higher than if only the softmax features are used (e.g. E-SCR20-SUP80-N/NRGB, sixth row of 

Table 7). 

At a global level, both Table 6 and Table 7 show that our approach requires a higher number of labelled 

pixels to achieve higher segmentation performance when the integrated features are employed. In 

contrast, for the visual inspection task, the use of softmax features only requires the scribble annotations 

to achieve good performance. Nevertheless, our approach using softmax features achieves higher mIOU 

than using the integrated features in most of the experiments. As a consequence, only softmax features 

are involved in the next experiments. 

Table 6: Segmentation performance for different centroid feature spaces and different widths of the scribble annotations. *N denotes that 

only the SMX (softmax) features are used to compute 𝐿𝑐𝑒𝑛 and 𝐿𝑚𝑠𝑒, while *NRGB denotes that the feature space for centroids prediction 

comprises both SMX and RGB features. Seg denotes that the segmentation output comes directly from the segmentation network, while 

Clu denotes that the segmentation output is obtained from clustering. 

Experiments wmIOU 𝑳pCE 𝑳cen 𝑳mse 
mIOU 
(Seg) 

mIOU 
(Seg,*N) 

mIOU 
(Seg,*NRGB) 

mIOU 
(Clu,*N) 

mIOU 
(Clu,*NRGB) 

E-SCR2 0.2721 ✓   0.3733 - - - - 

E-SCR5 0.2902 ✓   0.4621 - - - - 

E-SCR10 0.3074 ✓   0.4711 - - - - 

E-SCR20 0.3233 ✓   0.5286 - - - - 

E-SCR2-* 0.2721 ✓ ✓  - 0.6851 0.4729 0.6758 0.3889 

E-SCR5-* 0.2902 ✓ ✓  - 0.6798 0.4989 0.6706 0.6020 

E-SCR10-* 0.3074 ✓ ✓  - 0.6992 0.5130 0.6710 0.6267 

E-SCR20-* 0.3233 ✓ ✓  - 0.6852 0.5562 0.6741 0.6164 

E-SCR2-* 0.2721 ✓ ✓ ✓ - 0.6995 0.4724 0.6828 0.3274 

E-SCR5-* 0.2902 ✓ ✓ ✓ - 0.7134 0.4772 0.7001 0.2982 

E-SCR10-* 0.3074 ✓ ✓ ✓ - 0.7047 0.4796 0.6817 0.3130 

E-SCR20-* 0.3233 ✓ ✓ ✓ - 0.6904 0.5075 0.6894 0.6187 

 

Table 7: Segmentation performance for different centroid feature spaces and for different amounts of superpixels to generate the pseudo-

masks. *N denotes that only the SMX (softmax) features are used to compute 𝐿𝑐𝑒𝑛 and 𝐿𝑚𝑠𝑒, while *NRGB denotes that the feature space 

comprises both SMX and RGB features. Seg denotes that the segmentation output comes directly from the segmentation network, while 

Clu denotes that the segmentation output is obtained from clustering. 

Experiments wmIOU 𝑳pCE 𝑳cen 𝑳mse 
mIOU 
(Seg) 

mIOU 
(Seg,*N) 

mIOU 
(Seg,*NRGB) 

mIOU 
(Clu,*N) 

mIOU 
(Clu,*NRGB) 

E-SCR20-SUP30 0.6272 ✓   0.6613 - - - - 

E-SCR20-SUP50 0.6431 ✓   0.7133 - - - - 

E-SCR20-SUP80 0.6311 ✓   0.7017 - - - - 

E-SCR20-SUP30-* 0.6272 ✓ ✓  - 0.6848 0.6847 0.7081 0.6859 

E-SCR20-SUP50-* 0.6431 ✓ ✓  - 0.7447 0.7368 0.7372 0.7136 

E-SCR20-SUP80-* 0.6311 ✓ ✓  - 0.7242 0.7355 0.7127 0.6761 

E-SCR20-SUP30-* 0.6272 ✓ ✓ ✓ - 0.6919 0.7071 0.6987 0.7076 

E-SCR20-SUP50-* 0.6431 ✓ ✓ ✓ - 0.7542 0.7133 0.7491 0.7294 

E-SCR20-SUP80-* 0.6311 ✓ ✓ ✓ - 0.7294 0.7246 0.7268 0.7118 
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3.7.5. Effect of the loss function terms 

This section considers the effect of 𝐿cen and 𝐿mse on the segmentation results by analysing the performance 

achieved in the experiments of groups G1, G2 and G3. From Table 6, one can see that the mIOU of 

experiments in G2 is significantly higher than that of experiments in G1, where the maximum gap in mIOU 

between G1 and G2 is 0.3118 (E-SCR2 and E-SCR2-N). As for the segmentation performance for G3 

experiments, it is systematically above that of G2 experiments for the same width of the scribble 

annotations and if centroids are built only from the softmax features. When the colour data is incorporated, 

segmentation performance decreases from G2 to G3. 

Table 7 also shows performance improvements from G2 experiments, i.e. when 𝐿cen is incorporated into 

the loss function, over the performance observed from experiments in G1, and, in turn, segmentation 

results from G3 experiments are superior to that of G2 experiments. Therefore, the incorporation of the 

𝐿cen and 𝐿mse terms into the loss function benefits performance, gradually increasing the mIOU of the 

resulting segmentations. 

Regarding the segmentation computed from clustering, the mIOU of experiments in G3 is also higher than 

that of experiments in G2. In addition, it can be found out in Table 6 and Table 7 that the mIOU from 

clustering in some G2 experiments is slightly higher than that for G3 experiments (e.g. E-SCR20-SUP30-N), 

while the mIOU from segmentation in G2 is lower than that of G3. In other words, it seems that 𝐿mse, in 

some cases, makes the segmentation quality from clustering deteriorate. 

Overall, the incorporation of 𝐿cen and 𝐿mse improves segmentation performance and labelling from 

segmentation turns out to be superior to that deriving from class centroids. 

3.7.6. Impact of weak annotations and their propagation 

In this section, we evaluate our approach under different weak annotations and their propagation, and 

discuss on their impact on segmentation performance. To this end, we plot in Figure 16 the mIOU 

(complementarily to Table 6 and Table 7), recall and precision values resulting after the supervision of 

different sorts of weak annotations. A first analysis of these plots reveals that the curves corresponding to 

the G3 experiments are above those for G1 and G2 groups for all the performance metrics considered. 

Figure 16(a) shows that the mIOU values for the G2 and G3 groups are above those for G1 (the lower 

baseline), which follows a similar shape as the wmIOU values, while those from G2 and G3 groups keep at 

a more or less constant level for the different sorts of weak annotations. Globally, this behaviour clearly 

shows that the scribbles are enough for describing the classes in this case of binary classification problem, 

though the pseudo-masks (G2 and G3 groups) permits achieving a higher performance. The fact that the 

lower baseline (G1 group) always achieves lower mIOU values also corroborates the relevance of the 

Centroid Loss, despite its ultimate contribution to the segmentation performance is also affected by the 

quality of the weak annotations involved, i.e. the pseudo-masks deriving from scribbles and superpixels for 

the cases of the G2 and G3 groups. 

Additionally, observing the precision curves shown in Figure 16(c), one can notice that the precision for 

exclusively the weak annotations show a sharp decline when the weak annotations shift from scribbles to 

pseudo-masks. As can be noticed from the pseudo-masks shown in the second row of Figure 15, when the 

number of superpixels is low, e.g. 30, the pseudo-masks contain an important number of incorrectly 

labelled pixels, significantly more than that of the scribble annotations, and this is the reason for the 
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aforementioned decline. The recall curves, however, exhibit an upward trend as can be observed in Figure 

16(b) because of the larger amount of information ultimately provided by the weak annotations. On the 

other side, we can also notice that, in general, precision and recall values are higher for the G3 group than 

for the G2 group, and both curves are above those for the G1 group. Finally, the output from clustering 

does not clearly lead to a different performance, better or worse, over the alternative outcome from the 

segmentation network. 

(a) 

 

  

(b) (c) 

Figure 16: Performance metrics for the WSSS approach proposed in this work under different sorts of weak annotations. From left to right, 

the three figures plot respectively the mIOU, the mean Recall, and the mean Precision. SUP30, SUP50  

and SUP80 labels correspond to the use of 20 pixel-wide scribbles. 

From a global perspective, all this suggests that (a) segmentation quality benefits from the use of pseudo-

masks, (b) overcoming always the lower baseline based on the use of exclusively scribbles, (c) despite the 

incorrectly labelled pixels contained in pseudo-masks, (d) provided that the proper loss function is adopted, 

e.g. the full loss expressed in equation ( 9 ), which in particular (e) comprises the Centroid Loss. 

3.7.7. Comparison with other loss functions 

In Table 8, we compare the segmentation performance of our approach with that resulting from the use 

of the Constrained-size Loss 𝐿size and the SEC Loss 𝐿sec for different variations of weak annotations. As for 

the visual inspection task, the network trained with 𝐿sec is clearly inferior to the one resulting for our loss 

function, and the same can be said for 𝐿size, although, in this case, the performance gap is shorter, even 

negligible when the width of the scribbles is of 20 pixels. When the pseudo-masks are involved, our 

approach is also better though the difference with both 𝐿size and 𝐿sec is shorter. 
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Summing up, we can conclude that the loss function proposed in equation ( 9 ) outperforms both the 

Constrained-size Loss 𝐿size and the SEC Loss 𝐿sec on the visual inspection task. 

Table 8: Comparison of different loss functions. mIOU values are provided. Best performance is highlighted in bold. 

Weak Annotation 𝑳size  𝑳sec  Ours 

E-SCR2-N 0.6098 0.4366 0.6995 

E-SCR5-N 0.6537 0.4372 0.7134 

E-SCR10-N 0.6754 0.5486 0.7047 

E-SCR20-N 0.6909 0.5624 0.6904 

E-SCR20-SUP30-N 0.7068 0.6397 0.6919 

E-SCR20-SUP50-N 0.6769 0.7428 0.7542 

E-SCR20-SUP80-N 0.7107 0.6546 0.7294 

3.7.8. Final tuning and results 

As has been already highlighted along the previous sections, the network trained by means of the loss 

function described in equation ( 9 ), which in particular comprises the Centroid Loss, attains the best 

segmentation performance against other approaches for the visual inspection task. In order to check 

whether segmentation performance can increase further, in this section we incorporate a dense CRF as a 

post-processing stage of the outcome of the network. Table 9 collects metric values for the final 

performance attained by the proposed WSSS method and as well by the upper baseline method (E-FULL). 

To assess the influence of the CRF-based stage, in Table 9, we report mIOU, precision and recall values, 

together with the F1 score. 

Table 9: Segmentation results for the full loss function (G3). Seg denotes that the segmentation output comes directly from the 

segmentation network, while Clu denotes that the segmentation output is obtained from clustering. *CRF refers to the performance 

(mIOU) after dense CRF post-processing. Best performance for the WSSS approach is highlighted in bold. 

Experiments wmIOU 
mIOU 
(seg) 

mRec 
(seg) 

mPrec 
(seg) 

F𝟏 
(seg) 

mIOU 
(clu) 

mRec 
(clu) 

mPrec 
(clu) 

F𝟏 
(clu) 

*CRF 
(seg) 

E-SCR2-N 0.2721 0.6995 0.6447 0.6452 0.6449 0.6828 0.7663 0.5803 0.6605 0.7068 

E-SCR5-N 0.2902 0.7134 0.6539 0.6542 0.6540 0.7001 0.7447 0.6015 0.6655 0.7212 

E-SCR10-N 0.3074 0.7047 0.6797 0.6332 0.6556 0.6817 0.7741 0.5772 0.6613 0.7241 

E-SCR20-N 0.3233 0.6904 0.6917 0.6081 0.6472 0.6894 0.7816 0.5507 0.6461 0.7172 

E-SCR20-SUP30-N 0.6272 0.6919 0.7937 0.7081 0.7485 0.6987 0.7806 0.5946 0.6750 0.7489 

E-SCR20-SUP50-N 0.6431 0.7542 0.7543 0.7567 0.7555 0.7491 0.7725 0.6830 0.7250 0.7859 

E-SCR20-SUP80-N 0.6311 0.7294 0.7452 0.7397 0.7424 0.7268 0.7758 0.6200 0.6892 0.7693 

E-FULL 1.0000 0.8333 0.8537 0.9119 0.8818 - - - - 0.8218 

 

Regarding the visual inspection task, Table 9 shows that case E-SCR20-SUP80-N leads to the best 

segmentation mIOU (0.7542). After the incorporation of the dense CRF, the mIOU reaches a value of 

0.7859, with a performance gap with E-FULL of 0.8333 – 0.7859 = 0.0474. Case E-SCR20-SUP30-N attains 

the highest recall (0.7937), but the corresponding precision (0.7081) and F1 score (0.7485) are not the 

highest; the mIOU is also the second lowest (0.6919). This is because the segmentation result for E-SCR20-

SUP30-N contains more incorrect predictions than E-SCR20-SUP50-N. Consequently, a configuration of 20-

pixel scribbles and 50 superpixels for pseudo-mask generation seem to lead to the best performance, with 

a slightly increase thanks to the CRF post-processing stage. The outcome from clustering is not far in quality 

to those values, but, as can be observed, it is not as good (the best mIOU and F1 scores are, respectively, 

0.7491 and 0.7250). Further, it must be noticed that all the aforementioned results from pseudo-masks 

whose wmIOU is slightly above 60%. 
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From a global perspective, the results obtained indicate that 20-pixel scribbles, together with a rather 

higher number of superpixels, so that they adhere better to object boundaries, are the best options. In 

comparison with the lower baseline (G1 group), the use of the full loss function, involving the Centroid 

Loss, clearly makes training improve segmentation performance significantly, with a slight decrease 

regarding full supervision. Finally, segmentation results deriving from clustering are not better. 

Figure 17 shows examples of segmentation results. As can be observed, the segmentations resulting from 

our approach are very similar to those from the upper baseline (E-FULL). Moreover, as expected, results 

from clustering are basically correct though tend to label incorrectly pixels (false positives) from around 

correct labellings (true positives). 

 

 
Figure 17: Examples of segmentation results: (1st column) original images, (2nd column) full mask, (3rd column) results of the fully 

supervised approach, (4th & 5th columns) segmentation output for E-SCR20-N and E-SCR20-SUP50-N after the use of the dense CRF,  

(6th & 7th columns) segmentation output from clustering for the same configurations. 

Summing up, the use of the Centroid Loss has made possible training a semantic segmentation network 

using a small number of labelled pixels. Though the performance of the approach is inferior to that of a 

fully supervised approach, the resulting gap has turned out to be rather short, given the challenges arising 

from the use of weak annotations. 
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IV. Conclusions 

On the one hand, this report describes a two-stage arbitrarily-oriented object detection method for 

regressing the parameters of oriented bounding boxes for the case of CBC detection. The first stage of our 

solution comprises a feature pyramid architecture that has been embedded in an SSD-like network to fuse 

the available feature maps, giving rise to the FPSSD network. Besides, prior boxes for un-oriented bounding 

box regression have been chosen on the basis of a clustering process over the available datasets. In the 

second stage, a simple but effective neural network has been designed to regress the parameters of 

oriented bounding boxes. The design process has considered two parameterizations of oriented bounding 

boxes, being the two-target RBox regression model the variant with highest performance. The 

experimental results of the whole solution show improved performance over other detection approaches. 

On the other hand, this report also describes a weakly-supervised segmentation approach based on 

Attention U-Net. The loss function comprises three terms, namely a partial cross-entropy term, the so-

called Centroid Loss and a regularization term based on the mean squared error. They all are jointly 

optimized using an end-to-end learning model. As has been reported in the experimental results section, 

for the visual inspection task, our approach can achieve competitive performance with regard to full 

supervision, with a reduced labelling cost to generate the necessary semantic segmentation ground truth. 

Under weak annotations of varying quality, our approach has been able to achieve good segmentation 

performance, counteracting the negative impact of the imperfect labellings employed. 

The performance gap between our weakly-supervised approach and the corresponding fully-supervised 

approach has shown to be rather reduced regarding the mIOU values, although non-negligible, as well as 

for precision and recall. This suggests looking for alternatives even less sensitive to the imperfections of 

the ground truth deriving from the weak annotations, aiming at closing the aforementioned gap. In this 

regard, future work will focus on other deep backbones for semantic segmentation, e.g. DeepLab (Chen, 

Zhu, Papandreou, Schroff, & Adam, 2018). 
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