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Executive summary

This document describes novel deep-learning methods aiming at detecting defects in images in a visual
way. The work described here focuses mostly on the detection of coating breakdown and corrosion (CBC).
In this regard, we have developed two different methodologies: one that adopts an object detection
approach based on bounding boxes regression while the other corresponds to a semantic segmentation
algorithm, i.e. performs classification at the pixel level.

The contents of this report can be partly found in the following publications:

1. Kai YAO, Alberto ORTIZ, Francisco BONNIN-PASCUAL
A DCNN-based Arbitrarily Oriented Object Detector for Quality Control and Inspection
Applications, arXiv preprint arXiv:2101.07383v2, DOI: 10.48550/arXiv.2101.07383 (2021)
(journal paper submitted, under review)

2. Kai YAO, Alberto ORTIZ, Francisco BONNIN-PASCUAL
A Weakly-Supervised Semantic Segmentation Approach based on the Centroid Loss: Application
to Quality Control and Inspection, IEEE Access, vol. 9, pp. 69010 — 69026 (2021)

3. Kai YAO
Novel deep learning-based identification methods for accurate, orientation-aware visual
detection with application to inspection and quality control
PhD Dissertation, University of the Balearic Islands (2022)

|. Introduction

On the basis of the concept of Convolutional Neural Networks (CNN) proposed by LeCun and his
collaborators (in the form of the well-known LeNet networks (Lecun, Bottou, Bengio, & Haffner, 1998)),
followed by the technological breakthrough that allowed training artificial neural structures with a number
of parameters amounting to millions (Krizhevsky, Sutskever, & Hinton, 2012), deep CNNs (DCNNs) have
demonstrated remarkable capabilities for problems so complex as image classification, multi-instance
multi-object detection or multi-class semantic segmentation. As it is well known in the research
community, all this has been accomplished because of the "learning the representation" capability of CNNs.
This capability is embedded in the set of multi-scale feature maps defined in their architecture through
non-linear activation functions and a number of convolutional filters that are automatically learnt during
the training process by means of iterative back-propagation of prediction errors between current and
expected output.

In this report, we deal with the detection of one of the most common defects that can affect steel surfaces,
i.e. coating breakdown and/or corrosion (CBC), in any of its many different forms. This is of particular
relevance where the integrity of steel-based structures is critical, e.g. in large-tonnage vessels, storage
tanks, etc. An early detection, through suitable maintenance programmes, prevents these structures from
suffering major damage which can ultimately compromise their integrity and lead to accidents (with maybe
catastrophic consequences, in the case of vessels, for the crew and passengers, environmental pollution or
damage and/or total loss of the ship, its equipment and its cargo). The inspection of those structures by

humans is a time-consuming, expensive and commonly hazardous activity, which, altogether, suggests the
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introduction of defect detection tools to alleviate the total cost of an inspection. Figure 1 shows images of

metallic vessel surfaces affected by CBC.

Figure 1: Examples of coating breakdown and corrosion (CBC) affecting ship surfaces.

In the following, we describe two different methodologies to address the visual inspection task and hence
deal with the CBC detection problem: one that adopts an object detection approach based on bounding
boxes regression (Section IlI) while the other corresponds to a semantic segmentation algorithm, i.e.

performs classification at the pixel level (Section Il1).

II. Bounding-boxes regression-based approach

In this section, we adopt DCNN-based methodologies with an orientation towards multi-class object
recognition, a domain for which DCNNs have shown very competitive performance under different
operating conditions and with a minimum of human interaction or expert process knowledge. The proposal
described in this work is a generic solution for multi-scale, arbitrarily-oriented object detection that can be
applied to any context (after proper training). By arbitrarily-oriented object detection we mean that the
output of the detector is a collection of oriented bounding boxes likely to contain any of the objects of
interest for the task at hand. The fact that the detector is aware of objects orientation permits adapting
the detection to the area where the object lies without involving more pixels from the background than
necessary, thus producing a more effective detection (see Figure 2 for an illustration). On the other side, a
multi-scale detector allows dealing with objects that can appear in different sizes. Both features, multi-
scale and oriented-detection, become necessary when the detection problem involves objects with
irregular shapes and different sizes and aspect ratios.
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In more detail, this section describes a two-stage arbitrarily-oriented detector: the first stage predicts
locations for the objects of interest in the form of un-oriented bounding boxes, adopting a feature pyramid-
based approach to produce detections at different scales and so capture minor details if needed. The
second stage implements a lightweight CNN that is used for regressing the parameters of the oriented
bounding boxes better fitting the objects of interest that lie inside the un-oriented predictions produced
by the first stage.

(@) (b)
Figure 2: Use of oriented bounding boxes for objects with different shapes, sizes and aspect ratios: (a) example of detection by means of
unoriented bounding boxes, (b) example of more effective detections by means of oriented bounding boxes.

The main contributions of this work are as follows:

e We design a two-stage arbitrarily-oriented multi-category object detector, which we show can
successfully operate in the intended scenarios;

o We propose a feature pyramid-based network architecture and analyse several map fusion
strategies;

e The unoriented boxes regressor adopts a default boxes-based scheme using the output of a
process clustering the training data to obtain high-quality priors and improve target localisation
accuracy;

e Oriented bounding boxes regression is achieved by means of a simple network;

e The evaluation performed includes comparative studies on some important design choices.

The rest of this section is organised as follows: Section 2.1 overviews the full network, while Section 2.2
describes the multi-scale, orientation-unaware detector, Section 2.3 outlines the default boxes selection
process and Section 2.4 details the network producing oriented bounding boxes; finally, Section 2.5 reports
on the results of a number of experiments aiming at showing the performance of the full detector.

2.1. Detector overview

The detector proposed in this work comprises two stages. The first stage is intended to regress unoriented
bounding boxes by means of a variant of the Single-Shot MultiBox Detector (SSD). SSD is a one-stage object
detection approach that makes use of the standard VGG-16 network as backbone though modified by
replacing the last fully connected layers with the incorporation of additional convolutional layers (see (Liu,
et al., 2016) for the details). In comparison with most detection algorithms based on R-CNN, such as
(Girshick, 2015) and (Ren, He, Girshick, & Sun, 2015), SSD does not require any extra procedure to generate
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proposals. Alternatively, a mechanism of prior boxes is used, from which offsets are regressed for enhanced
localisation accuracy. On the other side, unlike R-CNN methods, detections are obtained at several scales
from a number of layers of the backbone, namely conv4_3, fc7, conv8_2, conv9_2, convi0_2 and convil_ 2.
The corresponding feature maps are subsequently involved in the calculation of a multi-term loss function
to regress the parameters of the bounding boxes (i.e. offsets relative to the prior boxes shape), and to
obtain confidence values for the classes. To this end, predicted boxes have to be matched with true
bounding boxes to train the detector, and only those positives with enough overlap contribute to the loss,
while positives and negatives contribute to the classification loss (after a hard negative mining process to
keep the positive vs negative samples ratio at 1:3).

For the first stage of the detector, in this work, we follow the proposals-free approach of SSD together with
the selection of a set of prior boxes, though with a number of differences: (a) the backbone consists in a
pyramid of feature maps involving information at more scales than SSD, as depicted in Figure 5, to favour
the detection of both large and small targets; (b) the pyramid involves a map fusion scheme that leads to
the best performance among a total of four alternatives; and (c) the set of prior boxes are not arbitrarily
hand-picked but the selection is guided by the training data, resulting from a clustering procedure taking

the ground truth as input. The details can be found in Sections 2.2 and 2.3.

The second stage of the detector consists in a specifically designed network trained to regress the
parameters of the rotated bounding box maximally contained in the unoriented bounding boxes stemming

from the first stage. A detailed description of this stage is given in Section 2.4.

Figure 3: Parameterisation of oriented and unoriented bounding boxes: a (d4, d;) pair can lead

to two different oriented boxes, with heights hy and h,.
To finish, Figure 3 illustrates how bounding boxes are parametrised in the approach proposed in this
section. For unoriented bounding boxes, we make use of the standard parameters, namely the box centre
(ux,uy) and its width u,,, and height u;,. Regarding oriented bounding boxes, they are expressed in terms
of the unoriented bounding box they are defined in, by means of intercepts (d,, d;). As shown in Figure 3,
these intercepts result from the intersection between the rotated box sides and the unrotated box sides.

Since this parametrization can lead to two different rotated boxes, a third optional parameter h can be

included in the definition of the oriented bounding box to disambiguate between h; and h,.

2.2. Feature Pyramid Single-Shot Multi-box Detector (FPSSD)

SSD uses feature maps from different layers of the network to regress bounding boxes. More precisely, SSD
adopts large-scale feature maps to detect small targets, and conversely uses small-scale feature maps to

detect large targets. In this work, we additionally make use of the feature pyramid concept to fuse feature
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maps from top layers with feature maps from bottom layers to obtain enhanced features containing both
semantic information and detailed features, which is exploited to detect different scale targets.

The idea of the feature pyramid originates from the image pyramid concept, which aims at being able to
analyse an image at multiple scales by means of multi-scale sampling of the original image via e.g. Gaussian
kernels. As assisted by a hierarchical CNN, a feature pyramid can be built in one single feed-forward pass
that simultaneously calculates the multi-scale features of the input image. Hence, the feature pyramid can
efficiently address the multi-scale problem with a relatively low cost.

So far, several works have implemented the feature pyramid concept onto DCNNs (see (Li & Zhou,
2017) and (Fu, Liu, Ranga, Tyagi, & Berg, 2017), among others). The four typical approaches for fusing the
feature maps are overviewed in Figure 4. Figure 4(a) illustrates the most common strategy, FPN, which
merges feature maps layer by layer by element-wise addition and performs detection from each
scale/feature map. Another method is the lightweight fusion strategy named FSSD shown in Figure 4(b). In
this case, features from different layers at different scales are concatenated together first and used next
to generate a series of pyramid features. Lastly, the different feature maps are combined by the
concatenation layer and sent to the loss function. Though this method is capable of saving computational
costs as compared to method (a), the feature maps feeding the detector finally lack certain semantic
information. Figure 4(c) illustrates FPSSD, the method proposed in this work, which employs a strategy
identical to FPN to fuse the feature maps, but aims at reducing the computational cost by means of a
concatenation layer that combines the different feature maps. Subsequently, the combined feature maps
are fed into the detector. Lastly, Figure 4(d) depicts the strategy adopted in the original SSD. Among others,
it shows that SSD does not integrate any feature fusion module, and thus it has a limited capability to

capture simultaneously low-level details and high-level semantic data.

| i s

==

_'I |—p

i

b

e — e ] top-cownpath
I;I_’ [ down-top path
;l—' [] concatenation

(c) (d) 1 —— [ detection

Figure 4: Different strategies for fusing feature maps in a feature pyramid:

(a) feature maps are fussed from top to bottom layer by layer; (b) a lightweight architecture that merges feature maps from top to
bottom; (c) FPSSD;
(d) original SSD approach, which uses feature maps from different layers separately.

Figure 5(top) outlines the architecture of FPSSD. As can be observed, the feature maps are extracted from
the conv4_3, fc7, conve_2, conv7_2, conv8_2, and conv9_2 layers of the original SSD network (Liu, et al.,
2016). On the other side, deconvolution layers are utilised to enlarge the respective feature maps. We also
make use of 1 X 1 convolutional layers, termed as lateral connections in (Lin, et al., 2017), to unify the
output channels of all feature maps. Lastly, down-top layers integrate different scales and submit the result

to the detector to predict the category and localisation of targets.
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Figure 5: FPSSD: (top) architecture, (bottom) alternative implementations of the upsampling modules

(Sum, Cat and Conv1x1 respectively denote pixel-wise sum, concatenation and 1x1 convolution).

2.3. Selection of (unoriented) Prior Boxes

SSD predefines a total of 6 prior boxes per feature map location by imposing different size combinations
(wy, hy) manually picked. Since, on the one hand, the shape of the bounding boxes to detect can vary
significantly and, on the other hand, SSD regresses the predicted bounding boxes from the prior boxes, a
proper selection of those prior boxes becomes crucial for achieving a high detection success; as already
noted in (Redmon, Divvala, Girshick, & Farhadi, 2016), such a proper selection contributes to the stability
of the underlying optimization process, converges faster and improves effectively the Intersection over
Union (10U) between predicted and true boxes. Hence, our object detector makes use of prior boxes
selected automatically in accordance to the available data.

In more detail, we run the well-known K-means algorithm over the bounding boxes belonging to the ground
truth, using box width and height as the clustering features. Instead of the Euclidean distance, typically
used by K-means implementations, we define IOU as a distance metric because we have observed better
clustering results with the latter. The distance between a sample box b; and the cluster centroid c; is hence

defined as:

bi N Cj _ O(bi,Cj)
b;uc a(by) + a(c;) — o(by, ;)

d(bi,Cj) =1- |OU(bl,C]) =1-

(1)
where o(-,-) denotes overlapping area and a(-) denotes area.

Table 1 shows averages of the IOU metric (see Section 2.5.2) for hand-picked prior boxes and automatically
selected boxes by clustering, and different amounts of prior boxes (for the hand-picked cases, we predefine
the boxes similarly to SSD). We can see that 4 clusters automatically selected yield similar performance
than 10 hand-picked prior boxes. This means that it is possible to propose automatically higher-quality and

better parameterized prior boxes. As could be expected, the more clusters, the better is the performance
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(the trend can be observed to continue for 7 or more prior boxes), although the number of clusters should

not be high to keep reasonable the running time.

Table 1: Mean 10U (mIOU) vs number of prior boxes and selection method.

Approach no. prior boxes | mIOU (%)
Hand-Picked 4 35.93
Hand-Picked 5 37.96
Hand-Picked 6 42.75
Hand-Picked 10 61.82
Clustering 4 61.58
Clustering 5 63.37
Clustering 6 65.31
2.4, Regression of Oriented Bounding Boxes

To regress the parameters of the rotated boxes, a lightweight convolutional network based on LeNet has
been adopted. With regard to the original network, the rotated boxes (RBox) regression network exhibits
several differences: (1) the input size is 63 X 63 after the incorporation of an additional convolutional layer
at the beginning of the network, in order to avoid reducing the image to LeNet’s 28 X 28 input pixels and
lose information; (2) batch normalization is used after each convolutional layer to speed up convergence
during training (this has also been shown to decrease the effect of covariate shift from the hidden
layers (loffe & Szegedy, 2015)); (3) since the bounding boxes parameters (d,,d,, h) range from O to 1, a
sigmoid layer lies between the last fully connected layer and the loss layer; and (4) lastly, an Euclidean
distance loss layer is used during regression:

N
1 o o o
L(d,g) = WZ(di —gi )"+ (db—gi)" + (hi = gb)*
i=1

(2)

where d = (d4, d,, h) denotes the predicted offsets and height, g = (gdl,gdz,gh) represents the ground
truth and N is the size of the mini-batch. The architecture of the RBox regression network can be found in

Figure 6.

. conv. layer |:| RelU |:| Fully connected layer |:| Sigmoid layer

I:l BN & scale layer . Pooling |:| Dropout layer

h

convl conv2 conv3 fcl fc2

Figure 6: Architecture of the RBox regression network.
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2.5. Experimental Results and Discussion

2.5.1.Experimental setup

The FPSSD and RBox networks have been implemented using Caffe (Jia, et al., 2014). Referring particularly
to FPSSD, the VGG-16 network is taken as the backbone, identically to the original SSD. Trainings and all
experiments have been performed on a PC platform fitted with an Intel i9-9900K processor with 64Gb RAM
and an Nvidia RTX 2080Ti GPU.

The dataset employed for training comprises images from different vessels taken under different
illumination conditions, viewpoints, etc. All the images have been resized to 512 X 512 pixels. As for
training, we have adopted a multiple steps strategy, where the learning rate was set to 10~° during the
first 8000 iterations, the next 6000 iterations used a learning rate of 107°, and the final 6000 iterations
employed a learning rate of 10~7. The batch size was set to 10, which is the best configuration for the GPU
involved in the experiments. We have employed SGD for network optimization, and the weight decay and
the momentum were set to 0.001 and 0.9, respectively. As a compromise between accuracy and
computation time, object detection was performed using six prior boxes whose features resulted from the
clustering process described in Section 2.3.

2.5.2. Assessment metrics

We employ the following metrics for performance evaluation:

e For both unoriented and oriented bounding boxes, we consider the Recall (R), the Precision (P)
and the Average Precision (AP) measured as the area under the P-R curve for a set of pre-defined
recall values (Everingham, et al., 2015). Detected bounding boxes with a confidence above 0.7
have been considered as the set of predictions P of the detector (as usual for object detection).

e For the unoriented bounding boxes, we also consider the averaged IOU (AIOU):

AIOU = % Z 10U (), g;) = — bing

T b:Ug:
bjep I ijEP J g}

(3)
where |P| stands for the cardinality of set P, b; denotes a prediction and g; is the true bounding

box with highest overlap with b;.

e To determine the performance of oriented detection, we also provide the averaged RBox IOU
(ARIOU) as supplementary performance metrics (analogously to Equation ( 3 )). Unlike the case of
unoriented bounding boxes, the shape of the intersection of two rotated bounding boxes turns

out to be into a convex polygon. In general, the area A, of such a polygon is given by:

n
1
A = EZ(xiyiH — X;4+1Y;) [Shoelace Formula]
i=1
where {(x1,¥1), .-, (X, ¥n)}} are the coordinates of the polygon vertices arranged counter-

clockwise, and (Xp,41, Yn41) = (X1, V7).
e Tofinish, in order to measure the accuracy of the parameters regressed, we also adopt the mean

absolute error (MAE) for the regression targets considered, calculated as follows:

1
MAE, = ﬁZ't” — t,]
P

where t,, and t, respectively denote the predicted target value and the ground truth.
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2.5.3.Regression results for unoriented bounding boxes

In this section, we report on the performance obtained for unoriented bounding boxes detection. We start
with an ablation study considering the effect of the lateral connections between layers of the top-down
and down-top paths and the necessary map fusion approaches. We consider SSD 512 as a baseline and the
alternatives that are enumerated in Figure 5 (bottom), which contemplate pixel-wise sum and
concatenation for map fusion, and the use or not of 1 X 1 convolutional filters to unify the number of
output channels from top to bottom layers. Results for different metrics are reported in Table 2. As can be

observed, option (b) attains the largest performance in all cases.

Table 2: Ablation study: effect of lateral connections and the feature map fusion approach. (Bold face denotes best.)

Configuration Figure 5(bottom) mRec mPrec Fy mAP

SSD 512 0.8311 | 0.9434 | 0.8837 | 0.8218
FPSSD 512 + Sum (a) 0.8241 | 0.9513 | 0.8831 | 0.8131
FPSSD 512 +1X1 conv + Sum (b) 0.9113 | 1.0000 | 0.9536 | 0.9091
FPSSD 512 + 1X1 conv + Cat (c) 0.8264 | 0.9433 | 0.8810 | 0.8133
FPSSD 512 + Cat (d) 0.8262 | 0.9563 | 0.8865 | 0.8172

To finish, some qualitative results from a selection of images can be found in Figure 7. As can be noticed,
FPSSD achieves competitive results, being particularly able to detect small areas affected by corrosion.

FPSSD

Figure 7: Unoriented detection results for FPSSD and SSD.

2.5.4.Regression results for oriented bounding boxes

Though FPSSD leads to good performance for unoriented detection for the visual inspection task, for some
elongated targets, either regularly-shaped or irregularly-shaped, the results of FPSSD can be inaccurate,
apart from the fact that unoriented bounding boxes tend to include parts of other objects and even cover
a large fraction of the image in order to fully contain certain objects of interest, as shown in Figure 7. This
are the reasons why oriented bounding boxes are considered in this work. In this section, we analyse the
performance of the RBox regression network described in Section 2.4.

Table 3 shows the MAE for each regression target and two configurations: (a) two-target regression
(d4,d;) and (b) three-target regresssion (d,, d,, h). As can be observed, the MAE values for d, and d, for
the two-target case are lower than the corresponding MAE values for the three-target case. Moreover, the
average MAE of the two-target case is also lower than the average MAE for the three-target case. On the
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other side, we have fine-tuned the last fully-connected layer of AlexNet (Krizhevsky, Sutskever, & Hinton,
2012), i.e. we have only optimised the weights of the last fully-connected layer, the weights of the other
layers have been frozen. We have also replaced the softmax layer by a sigmoid layer and used the resulting
model as a baseline to compare with. Table 3 shows that, on average, the fine-tuned AlexNet produces
worse predictions than the RBox network.

Table 3: MAE values for the regression targets considered by the RBox network in comparison with AlexNet. (Bold face denotes best.)

Approach d, d, h average
RBox (2-target) 0.1556 | 0.1612 - 0.1584
RBox (3-target) 0.3151 | 0.3105 | 0.0889 | 0.2381
AlexNet (2-target) | 0.1722 | 0.1915 - 0.1818
AlexNet (3-target) | 0.2722 | 0.3744 | 0.2501 | 0.2989

Figure 8 shows some examples of detections of rotated bounding boxes for two- and three-target
regression. In the pictures, the red points correspond to the d; and d, intercepts, while the green line
represents the third regression target h. The black line just connects the red points to show the predicted
orientation of the object detected. It can be observed that the black lines in the first column (using two-
target regression) adhere better to the orientation of the objects than the detections of the second column
(using three-target regression); the two-target RBox network outperforms as well the fine-tuned version
of AlexNet.

(a) RBox, 2-target (b) RBox, 3-target (c) AlexNet, 2-target (d) AlexNet, 3-target

Figure 8: RBox regression results: (a) RBox network for 2 regression targets, (b) RBox network for 3 regression targets, (c) AlexNet for 2
regression targets, (d) AlexNet for 3 regression targets. (The red dots correspond to regression targets d4 and d, ,

while the green line represents the regression target h.)

At last, we connect the FPSSD and the RBox networks to infer oriented detections end to end, i.e. the input
of the RBox regression network is the prediction of FPSSD. In this regard, notice that, because the output
of FPSSD is a prediction, it could be slightly displaced with regard to the true object location (which is what

has been used for training), increasing hence the challenge of estimating correctly the object orientation.

Table 4 compares, by means of ARIOU values, the two-target and three-target RBox regression networks
with TextBoxes++ (Liao, Shi, & Bai, 2018), an arbitrarily-oriented text detector also based on SSD, which we
have fine-tuned for the visual inspection task and employed as a baseline for this experiment. TextBoxes++
is combined with a neural network-based text recognition module which, for obvious reasons, is not

involved in this experiment. On the other side, as already mentioned, the two-target regression variant of
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RBox gives rise to two predictions (as described in Figure 3). For this case, we always select the largest
oriented box.
Table 4: ARIOU values for the RBox network. (Bold face denotes best.)

RBox (2-target) RBox (3-target) TextBoxes++
0.5932 0.5419 0.4615

(b) FPSSD + RBox, 3-target (c) TextBoxes++

!‘/‘“‘ iz

Figure 9: Examples of oriented detections for two- and three-target regression and TextBoxes++

Figure 9 shows final detection results for the full oriented-detection solution. For two-target regression,
we show two oriented boxes, in red and in green, corresponding to the two possible solutions for every
(dy,d,) pair. As already observed at a quantitative level, the RBox regression network for two-target
regression gives rise to more accurate detections than TextBoxes++. Although the three-target regression
approach gives rise to a single solution, it is not as accurate as the two-target variant. As for TextBoxes++,
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its performance has neither resulted to be above the other approaches (despite the network has effectively
converged while being fine-tuned for the two datasets).

Ill. Semantic segmentation-based approach

Image segmentation is a classical problem in computer vision aiming at distinguishing meaningful units in
processed images. To this end, image pixels are grouped into regions that on many occasions are expected
to correspond to the scene object projections. One step further identifies each unit as belonging to a
particular class among a set of object classes to be recognised, giving rise to the Multi-Class Semantic
Segmentation (MCSS) problem. From classical methods (e.g. region growing (Gonzalez & Woods, 2018)) to
more robust methods (e.g. level-set (Wang, Ma, & Zhu, 2021) and graph-cut (Boykov & Funka-Lea, 2006)),
various techniques have been proposed to achieve automatic image segmentation in a wide range of
problems. Nevertheless, it has not been until recently that the performance of image segmentation
algorithms has attained truly competitive levels, and this has been mostly thanks to the power of machine
learning-based methodologies.

Regarding DCNN-based image segmentation, (Guo, Liu, Georgiou, & Lew, 2018) distinguish among three
categories of MCSS approaches in accordance to the methodology adopted while dealing with the input
images (and correspondingly the required network structure): region-based semantic segmentation,
semantic segmentation based on Fully Convolutional Networks (FCN) and Weakly-Supervised semantic
segmentation (WSSS). While the former follows a segmentation using recognition pipeline, which first
detects free-form image regions, and next describes and classifies them, the second approach adopts a
pixel-to-pixel map learning strategy as key idea without resorting to the image region concept, and, lastly,
WSSS methods focus on achieving a performance level similar to that of Fully-Supervised methods (FSSS)
but with a weaker labelling of the training image set, i.e. less spatially-informative annotations than the
pixel level, to simplify the generation of ground truth data. It is true that powerful interactive tools have
been developed for annotating images at the pixel level, which, in particular, just require that the annotator
draws a minimal polygon surrounding the targets (see e.g. the open annotation tool by the MIT (Wada,
2016)). However, it still takes a few minutes on average to label the target areas for every picture (e.g.
around 10 minutes on average for MS COCO labellers, as described by (Lin, et al., 2014)), which makes
WSSS methods interesting by themselves and actually quite convenient in general. In this section, we focus
on this last class of methods and propose a novel WSSS strategy based on a new loss function combining

several terms to counteract the simplicity of the annotations.

WSSS methods are characterised, among others, by the sort of weak annotation that is assumed. In this
regard, (Chan, Hosseini, & Plataniotis, 2020) highlight several weak annotation methodologies, namely
bounding boxes, scribbles, image points and image-level labels (see Figure 10 for an illustration of all of
them). In this work, we adopt a scribble-based methodology from which training masks are derived to
propagate the category information from the labelled pixels to the unlabelled pixels during network

training.
The main contributions of this work are summarised as follows:

e A new loss function L comprising several partial cross entropy terms is developed to account for

the vagueness of the annotations and the inherent noise of the training masks that are derived
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from them. This function includes a class centroids-based loss term, named as the Centroid Loss,
which induces a clustering process within the semantic segmentation approach.

e Another term of L is defined through a Mean Squared Error (MSE) loss that cooperates with the
other partial cross-entropy losses to refine the segmentation results.

e The Centroid Loss is embedded over a particular implementation of Attention U-Net (Oktay, et al.,
2018).

(a) (b) () (d)

Figure 10: Examples of weak annotations, from more to less informative: (a) bounding boxes, (b) scribbles,

(c) point-level labels, (d) image-level labels.

The rest of this section is organised as follows: Section 3.1 describes the weakly-supervised methodology
developed in this work; Section 3.2 discusses on the weak annotations adopted; Section 3.3 details the
architecture of the network; Sections 3.4, 3.5 and 3.6 presents the different terms of the loss function;
finally, Section 3.7 reports on the results of a number of experiments aiming at showing the performance

of our approach from different points of view.

3.1. Methodology

Figure 11(a) illustrates fully supervised semantic segmentation approaches based on DCNN, which,
applying a pixel-wise training strategy, try to make network predictions resemble the full labelling as much
as possible, thus achieving good segmentation performance levels in general. By design, this kind of
approach ignores the fact that pixels of the same category tend to be similar to their adjacent pixels. This
similarity can, however, be exploited when addressing the WSSS problem by propagating the known pixel
categories towards unlabelled pixels. In this respect, several works reliant on pixel-similarity to train the
WSSS network can be found in the literature: e.g. a dense Conditional Random Field (CRF) is used
in (Papandreou, Chen, Murphy, & Yuille, 2015), the GraphCut approach is adopted in (Zhao, Liang, & Wei,
2018), and superpixels are used in ScribbleSup (Lin, Dai, Jia, He, & Sun, 2016).
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Ground Truth (top layer) Ground Truth (top layer)

Unlabelled Pixel

® Category 0

A Category 1

Prediction (bottom layer) Predictic}'h'(bottom layer)

(a) (b)

Figure 11: lllustration of (a) full supervision and (b) the weakly-supervised approach for semantic segmentation proposed in this work: (a)
all pixels are labelled to make the prediction [bottom layer of the drawing] resemble the ground truth [top layer of the drawing] as much
as possible after pixel-wise training; (b) to solve the WSSS problem, the category information from the incomplete ground truth, i.e. the
weak annotations, is propagated towards the rest of pixels making use of pixel similarity and minimizing distances to class centroids
derived from the weak annotations.

Inspired by the aforementioned, in this section, we propose a semantic segmentation approach using
scribble annotations and a specific loss function intended to compensate for missing labels and errors in
the training masks. To this end, class centroids determined from pixels coinciding with the scribbles, whose
labelling is actually the ground truth of the problem, are used in the loss function to guide the training of

the network so as to obtain improved segmentation outcomes. The process is illustrated in Figure 11(b).

Furthermore, similarly to ScribbleSup (Lin, Dai, Jia, He, & Sun, 2016), we also combine superpixels and
scribble annotations to propagate category information and generate pseudo-masks as segmentation
proposals, thus making the network converge fast and achieve competitive performance. By way of
example, Figure 12(b) and (c) show, respectively, the scribble annotations and the superpixels-based
segmentations obtained for one of the images of the training dataset. The corresponding pseudo-masks,
containing more annotated pixels than the scribbles, are shown in Figure 12(d). As can be observed, not all
pixels of the pseudo-masks are correctly labelled, which may affect segmentation performance. It is
because of this fact that we incorporate the Centroid Loss and a normalized MSE terms into the full loss

function.

(a) (b) () (d)

Figure 12: Weak annotation and propagation example: (a) original images; (b) scribbles superimposed over the original image; (c) scribbles

superimposed over the superpixels segmentation result; (d) resulting pseudo-masks. Regarding the scribble annotations: red and green
scribbles respectively denote corrosion and background. As for the pseudo-masks: red, black and green pixels respectively denote

corrosion, background and unlabelled pixels.
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The remaining methodological details are given along the next sections: we begin with the way how weak
annotations are handled and how the pseudo-masks are obtained in Section 3.2, while the architecture of
the network is described in Section 3.3 and the different loss terms are detailed and discussed in Sections
3.4 (partial Cross-Entropy loss, Lyce), 3.5 (Centroid Loss, Lc,) and 3.6 (normalized MSE-term, Ly, and the

full loss function L).

3.2. Weak Annotations and Pseudo-Masks Generation

As already said, Figure 12(b) shows an example of scribble annotations for the visual inspection case.
Because scribbles represent only a few pixels, the segmentation performance that the network can be
expected to achieve will be far from satisfactory for any task that is considered. To enhance the network
performance, we combine the scribbles with an oversegmentation of the image to generate pseudo-masks
as segmentation proposals for training. For the oversegmentation, we make use of the Adaptive-SLIC
(SLICO) algorithm (Achanta, et al., 2012), requesting enough superpixels so as not to mix different classes
in the same superpixel. By way of illustration, Figure 12(c) shows an oversegmentation in 50 superpixels.
Next, those pixels belonging to a superpixel that intersects with a scribble are labelled with the same class
as the scribble, as shown in Figure 12(d). In Figure 12(d), the black pixels represent the background, the
red pixels indicate corrosion, and the green pixels denote unlabelled pixels.

3.3. Network Architecture

In this work, we adopt U-Net (Ronneberger, Fischer, & Brox, 2015) as the base network architecture. As it
is well known, U-Net evolves from the fully convolutional neural network concept and consists of a
contracting path followed by an expansive path. It was developed for biomedical image segmentation,
though it has been shown to exhibit good performance in general for natural images even for small training
sets. Furthermore, we also embed Attention Gates (AG) in U-Net, similarly to Attention U-Net (AUN)
(Oktay, et al., 2018). These attention modules have been widely used in Natural Language Processing (NLP),
e.g. (Clark, Khandelwal, Levy, & Manning, 2019). Other works related with image segmentation, e.g. (Sinha
& Dolz, 2021), have introduced them for enhanced performance. In our case, AGs are integrated into the

decoding part of U-Net to improve its ability to segment small targets.

For completeness, we include in Figure 13 a schematic about the operation of the AG that we make use

of in this work, which, in our case, implements the series of operations described below:

(xic) = alxi,

(4)

al = o, (W(; (al(WxTxf + W g + bg)) + b¢)

where the feature-map xl-l € RF! is obtained at the output of layer [ for pixel i, ¢ denotes a channel in xillc,
F, is the number of feature maps at that layer, the gating vector g; is used for each pixel i to determine
focus regions and is such that g; € R (after up-sampling the input from the lower layer), W, € RF>1,
W, € RF*1, and W, € R*! are linear mappings, while b; € R and by, € R denote bias terms, g, and o,
respectively represent the ReLU and the sigmoid activation functions, af € [0,1] are the resulting attention
coefficients, and @, = {W, Wy, by; W, be } is the set of parameters of the AG.
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Figure 13: Schematic diagram of an Attention Gate (AG). N is the size of the mini-batch.

The attention coefficients ; are intended to identify salient image regions and discard feature responses
so as to preserve only the activations relevant to the specific task. In (Hu, Shen, & Sun, 2018), the Squeeze-
and-Excitation (SE) block obtains attention weights in channels for filter selection. In our approach, the AGs

involved calculate attention weights at the spatial level.

As shown in Figure 14, AGs are fed by two input tensors, one from the encoder side of U-Net and the other
from the decoder side, respectively x and g in Figure 13. With the AG approach, spatial regions are selected
on the basis of both the activations x and the contextual information provided by the gating signal g which
is collected from a coarser scale. The contextual information carried by the gating vector g is hence used
to highlight salient features that are passed through the skip connections. In our case, g enters the AG after

an up-sampling operation that makes g and x have compatible shapes (see Figure 13).

Apart from the particularities of the AG that we use, which have been described above, another difference
with the original AUN is the sub-network that we attach to the main segmentation network, as can be
observed from the network architecture that is shown in Figure 14. This sub-network is intended to predict
class centroids on the basis of the scribbles that are available in the image, with the aim of improving the
training of the main network from the possibly noisy pseudo-masks, and hence achieve a higher level of
segmentation performance. Consequently, during training: (1) our network handles two sorts of ground
truth, namely scribble annotations Y, to train the attached sub-network for proper centroid predictions,
and the pseudo-masks Y., for image segmentation; and (2) the augmented network yields two outputs, a
set of centroids P, and the segmentation of the image P, (while during inference only the segmentation
output P, is relevant). Predicted cluster centroids contribute to the Centroid Loss term L., (described in
Section 3.5) of the full loss function L, which comprises two more terms (as described in Section 3.6).
Thanks to the design of L, the full network —i.e. the AUN for semantic segmentation and the sub-net for
centroids prediction—is trained through a joint training strategy following an end-to-end learning model.
During training, the optimization of L., induces updates in the main network weights via back-propagation

that are intended to lead to enhanced training and therefore produce better segmentations.
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Figure 14: Block diagram of the Centroids AUN model. Size decreases gradually by a factor of 2 at each scale in the encoding part and
increases by the same factor in the decoding part. In the latter, AGs are used to help the network focus on the areas of high-response in
the feature maps. The Conv Skip block is the skip connection of ResNet (He, Zhang, Ren, & Sun, 2016). The sub-network at the lower part

of the diagram is intended to predict class centroids. In the drawing, C denotes the number of classes
and M is the dimension of the class centroids.

As can be observed, the centroids prediction sub-net is embedded into the intermediate part of the
network, being fed by the last layer of the encoder side of our AUN. As shown in Figure 14, this sub-net
consists of three blocks, each of which comprises a fully connected layer, a batch-normalization layer, and
a third layer of ReLU activation functions. The shape of P.., is C X M, where C is the number of categories
and M denotes the dimension of the feature space where the class centroids are defined. In our approach,
centroid features are defined from the softmax layer of the AUN, and hence comprises C components,
though we foresee to combine them with K additional features from the classes, which are incorporated
externally to the operation of the network, and hence M = C + K. On the other side, the shape of P, is
C X W x H, where (H, W) is the size of the input image.

3.4. Partial Cross-Entropy Loss

Given a C-class problem and a training set (), comprising a subset ; of labelled pixels and a subset ; of
unlabelled pixels, the Partial Cross-Entropy Loss Lcg, widely used for WSSS, computes the cross-entropy

only for labelled pixels p € Q;, ignoring p € Qy:
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Loce = Z Z —Yg).c 108 Ys(p),c

Czlpe.()il)
(5)

where Yyp)c € 0,1 and ysp)¢c € [0,1] represent respectively the ground truth and the segmentation

output. In our case, and for Ly, Qil) is defined as the pixels labelled in the pseudo-masks (hence, pixels
from superpixels not intersecting with any scribble belong to Qy; and are not used by the previous loss

term. Hence, y,(p), refers to the pseudo-masks, i.e. Yog, While ;) ¢ is the prediction, i.e. Py.g, as supplied

eg’
by the softmax final network layer.

3.5. Centroid Loss

As can be easily foreseen, when the network is trained using the pseudo-masks, the segmentation
performance depends on how accurate the pseudo-masks are and hence on the quality of superpixels, i.e.
how they adhere to object boundaries and avoid mixing classes. The Centroid Loss function is introduced
in this section for the purpose of compensating a dependence of this kind and improving the quality of the
segmentation output.

In more detail, we express the Centroid Loss term L., as another partial cross-entropy loss:

c
Lcen = 2 Z _y;(P).C lOg y;(P),C
c=1 DEQIEZ)
(6)
defining in this case:
. .QEZ) as the set of pixels coinciding with the scribbles,
. y;(p)’C as the corresponding labelling, and
y? _ eXp(_dp.c)
s®e 6121 €XPp (_dp,C’)
2
||fp — Hel 5
pec 2
c
Y=g ||fp = He'| 5
(7)

where: (1) f, is the feature vector associated to pixel p and (2) u, denotes the centroid predicted for class
C,i.e. Uc € Peep. fp is built from the section of the softmax layer of the main network corresponding to pixel
p, though f,, can be extended with the incorporation of additional external features, as already mentioned.
This link between L,ce and L, through the softmax layer makes both terms decrease through the joint
optimization, in the sense that for a reduction in L, to take place, and hence in the full loss L, also Ly
has to decrease by better predicting the class of the pixels involved. The additional features that can be
incorporated in f, try to introduce information from the classes, e.g. predominant colour, to guide even

more the optimization.
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In practice, this loss term pushes pixel class predictions towards, ideally, a subset of the corners of the C-
dimensional hypercube, in accordance with the scribbles, i.e. the available ground truth. Some similarity
can be certainly established with the K-means algorithm. Briefly speaking, K-means iteratively calculates a
set of centroids for the considered number of clusters/classes, and associates the samples to the closest
cluster in feature space, thus minimizing the intra-class variance until convergence. Some DCNN-based
clustering approaches reformulate K-means as a neural network optimizing the intra-class variance loss by
means of a back-propagation-style scheme (Peng, Tsang, Zhou, & Zhu, 2018). Differently from the latter, in
this work, L., reformulates the unsupervised process of minimizing the distances from samples to
centroids into a supervised process since the clustering takes place around the true classes defined by the

labelling of the scribbles y;(p)’c and the extra information that may be incorporated.
3.6. Full Loss Function

Since Ly applies only to pixels labelled in the pseudo-mask and L, is also restricted to a subset of image
pixels, namely the pixels coinciding with the scribbles, we add a third loss term in the form of a normalized

MSE loss L to behave as a regularization term that involves all pixels for which a class label must be

predicted Qf‘), i.e. the full image. This term calculates the normalized distances between the segmentation

result for every pixel and its corresponding centroid:

Zpegf) dp.c(p)

(8)

where |A| stands for the cardinality of set A, and d,, o(;,) is as defined by equation ( 7 ), with c(p) as the

class prediction for pixel p (and ¢ (p) the corresponding predicted centroid), taken from the softmax layer.

Finally, the complete loss function is given by

L= LpCE + AcenLcen + AmseLmse
(9)
where A, and A, are trade-off constants.

3.7. Experimental Results and Discussion

In this section, we report on the results obtained for our WSSS approach. For a start, Sections 3.7.1-3.7.3
describe the experimental setup. Next, in Section 3.7.4 we discuss about the feature space where the
Centroid Loss is defined and about its relationship with the weak annotations, while Section 3.7.5 evaluates
the effect on the segmentation performance of several combinations of the terms of the loss function L,
and Section 3.7.6 analyses the impact of weak annotations and their propagation. Subsequently, our
approach is compared against two previously proposed methods in Section 3.7.7. To finish, we address
final tuning and show segmentation results, for qualitative evaluation purposes, for some images of both

application cases in Section 3.7.8.
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3.7.1.Experimental setup

For a start, the dataset employed for training comprises images from different vessels taken under different
illumination conditions, viewpoints, etc. Besides, it has been augmented with rotations and scaled versions
of the original images together with random croppings, to increase the diversity of the set. Finally, as
already explained, the ground truth comprises scribbles and pseudo-masks (generated in accordance to
the process described in Section 3.2). By way of illustration, Figure 15 shows some examples of weak
annotations with different settings as for the width of the scribbles and the number of superpixels used for
generating the pseudo-masks.

full mask 30 50 80

Figure 15: Examples of weak annotations and their propagation: (1st row) examples of scribble annotations of different widths, namely,

from left to right, 2, 5, 10 and 20 pixels; (2nd row) the leftmost image shows the fully supervised ground truth, while the remaining images
are examples of pseudo-masks generated from 20-pixel scribbles and for different amounts of superpixels, namely 30, 50, and 80, for the
image of Figure 12 and, hence, for the visual inspection and the quality control application cases.

(The colour code is the same as for Figure 12.)

As well as for the object detection approach described in Section Il, all experiments have been performed
on a PC fitted with an NVIDIA GeForce RTX 2080 Ti GPU, a 2.9GHz 12-core CPU (Intel i9-9900K) with 32 GB
RAM, and Ubuntu 64-bit. The batch size has been 8 for all experiments and the size of the input image has

been 320 X 320 pixels, since this has turned out to be the best configuration for the aforementioned GPU.

As already mentioned, the AUN for semantic segmentation and the sub-net for centroid prediction are
jointly trained following an end-to-end learning model. The network weights are initialized by means of the
Kaiming method (He, Zhang, Ren, & Sun, 2015), and they are updated using a 10~* learning rate for 200
epochs using the ADAM optimizer.

Best results have been obtained for the balance parameters A, and 4., set to 1.
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3.7.2.Evaluation metrics

For quantitative evaluation of our approach, we consider the following metrics:

o The mean Intersection Over Union (mIOU), which can be formally stated as follows (see e.g. (Long,
Shelhamer, & Darrell, 2015)):
Given n;; as the number of pixels of class i that fall into class j, for a total of C different classes

oU = E i
mlOU = — .
¢4 Xjnij+ Xjn —ny

(10)

. The mean Recall and mean Precision are also calculated to evaluate the segmentation
performance for all classes. True Positive (TP), False Positive (FP) and False Negative (FN) samples
are determined from the segmentation results and the ground truth. Using a macro-averaging
approach (Zhang & Zhou, 2014), the mean Recall (mRec) and mean Precision (mPrec) are

expressed as follows:

meee =\ Th +FN, | T\ LT
L

L

meree =\ T +rp ) T c\ L P,
L

L
(11)
where TP;, FP; and FN; are, respectively, the true positives, false positives and false negatives for
class i, and T; and P; are, respectively, the number of positives in the ground truth and the number
of positive predictions, both for class i. From now on, to shorten the notation, when we refer to
precision and recall, it must be understood that we are actually referring to mean precision and
mean recall.

o The F; score as the harmonic mean of precision and recall:

2 - mPrec - mRec
1 —

mPrec + mRec

(12)
In all experiments, we make use of fully supervised masks/ground truth for both datasets in order to be
able to report quantitative measurements about the segmentation performance. This ground truth has
been manually generated only for this purpose, it has been used for training only when referring to the
performance of the fully-supervised approach, for comparison purposes between the fully- and weakly-

supervised solutions.

To finish, in a number of experiments we also report on the quality of the pseudo-masks, so that the
segmentation performance reported can be correctly valued. To this end, we calculate a weak mIOU

(wmIOU) using equation ( 10 ) between the pseudo- and the fully-supervised masks involved.

3.7.3.0verall view of the experiments

The experiments that are going to be discussed along the next sections consider different configurations
for the different elements that are involved in our semantic segmentation approach. These

configurations, which are enumerated in Table 5, involve:
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. different widths of the scribble annotations used as ground truth, namely 2, 5, 10 and 20 pixels,
o different amounts of superpixels for generating the pseudo-masks, namely 30, 50 and 80,

o two ways of defining the feature space for the class centroids: from exclusively the softmax layer

of AUN and combining those features with other features from the classes.

Table 5: Labels for the different experiments performed, varying the width of scribbles, the number of superpixels employed for

generating the pseudo-masks, and the terms involved in the loss function employed during training. SMX stands for softmax.

Configuration Label Scrl.bbles Numbe.r of Centroid features | Supervision Loss function
width superpixels
E-SCR2 2 - -
E-SCR5 5 - -
only scribbles Loce
E-SCR10 10 - -
lower baseline
(G1) E-SCR20 20 - -
E-SCR20-SUP30 20 30 -
E-SCR20-SUP50 20 50 - pseudo-masks Loce
E-SCR20-SUP80 20 80 -
E-SCR2-N 2 - SMX
E-SCR2-NRGB 2 - SMX & norm. RGB
E-SCR5-N 5 - SMX
E-SCR5-NRGB 5 - SMX & norm. RGB
only scribbles Loce + Leen [+ Lmse]
E-SCR10-N 10 - SMX
E-SCR10-NRGB 10 - SMX & norm. RGB
E-SCR20-N 20 - SMX
G2/G3
E-SCR20-NRGB 20 - SMX & norm. RGB
E-SCR20-SUP30-N 20 30 SMX
E-SCR20-SUP30-NRGB 20 30 SMX & norm. RGB
E-SCR20-SUP50-N 20 50 SMX
pseudo-masks Loce + Leen [+Limse]
E-SCR20-SUP50-NRGB 20 50 SMX & norm. RGB
E-SCR20-SUP80-N 20 80 SMX
E-SCR20-SUP80-NRGB 20 80 SMX & norm. RGB
upper baseline E-FULL - - - full mask Lee

Notice that the first rows of Table 5 refer to experiments where the loss function used for training is just
the partial cross-entropy, as described in equation ( 5 ), and therefore can be taken as a lower baseline
method. The upper baseline would correspond to the configuration using full masks and the cross entropy
loss L for training, i.e. full supervised semantic segmentation, which can also be found in Table 5 as the

last row.

Apart from the aforementioned variations, we also analyse the effect of several combinations of the loss
function terms, as described in equation ( 9 ), defining three groups of experiments: Group 1 (G1), which
indicates that the network is trained by means of only Lycg, and hence would also coincide with the lower
baseline; Group 2 (G2), which denotes that the network is trained by means of the combination of Ly and

Lcen; and Group 3 (G3), for which the network is trained using the full loss function as described in equation

(9).
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Finally, we compare our segmentation approach with two other alternative approaches also aimed at
solving the WSSS problem through a modified loss function. These loss functions are the Constrained-size
Loss (Lg,e) (Kervadec, et al., 2019) and the Seed, Expand, and Constrain (SEC) Loss (L) (Kolesnikov &
Lampert, 2016):

Lgze = Lpce+ AsizeLC‘(Vs)
Lsec = Lseed + Lexpand + Lconstrain
(13)
On the one hand, A, for the Le(y ) term is set to 1073. On the other hand, regarding L., it consists of
three terms, the seed l0ss Lgeeqy, the expand 10ss Leypang, and the constrain 10ss Legngirain- In OUr case, we
feed Lgeq from the scribble annotations, while, regarding Leypang @and Leonstrain, We adopt the same

configuration as in the original work.

3.7.4. About the centroid loss feature space and the weak annotations

Given the relevance that colour features can have inimage semantic segmentation performance (Liu, Deng,
& Yang, 2018), the experiments reported in this section consider the incorporation of colour data from the
classes into the calculation and minimization of the Centroid and the MSE loss functions, L., and L.

More specifically, we adopt a simple strategy by making use of normalized RGB features :

RGB, =——(R,,G,,B
NRGGy Rp+Gp+Bp(p p p)

(14)
As mentioned in Section 3.3, the shape of P.., is C X M, where M = C + K, and K is the number of
additional features from the classes that we incorporate into the network optimization problem. Therefore,

in our case, K = 3. Of course, more sophisticated hand-crafted features can be incorporated into the
process, though the idea of this experiment has been to make use of simple features.

Table 6 and Table 7 evaluate the performance of our approach for different combinations of loss terms,
for the two centroid feature spaces outlined before, and also depending on the kind of weak annotation
that is employed as ground truth and their main feature value, i.e. width for scribbles and number of
superpixels for pseudo-masks. Besides, we consider two possibilities of producing the final labelling: from
the output of the segmentation network and from the clustering deriving from the predicted class
centroids, i.e. label each pixel with the class label of the closest centroid; from now on, to simplify the
discussion despite the language abuse, we will refer to the latter kind of output as that resulting from

clustering.

As can be observed in Table 6, segmentation and clustering mIOU for experiments E-SCR*-NRGB is lower
than the mIOU for experiments E-SCR*-N, with a large gap in performance in a number of cases, what
suggests that the RGB features actually do not contribute —rather the opposite— on improving
segmentation performance when scribble annotations alone are used as supervision information for the

visual inspection dataset.

Lif R, = G, = B, = 0, then nRGB,, = (0,0,0).
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As for Table 7, contrary to the results shown in Table 6, the performance that can be observed from
experiments E-SCR20-SUP*-NRGB results to be similar to that of experiments E-SCR20-SUP*-N.
Additionally, the mIOU of some experiments where the integrated features, i.e. softmax and colour, are
used is even higher than if only the softmax features are used (e.g. E-SCR20-SUP80-N/NRGB, sixth row of
Table 7).

At a global level, both Table 6 and Table 7 show that our approach requires a higher number of labelled
pixels to achieve higher segmentation performance when the integrated features are employed. In
contrast, for the visual inspection task, the use of softmax features only requires the scribble annotations
to achieve good performance. Nevertheless, our approach using softmax features achieves higher mlOU
than using the integrated features in most of the experiments. As a consequence, only softmax features

are involved in the next experiments.

Table 6: Segmentation performance for different centroid feature spaces and different widths of the scribble annotations. *N denotes that
only the SMX (softmax) features are used to compute L, and L,,s., while *NRGB denotes that the feature space for centroids prediction
comprises both SMX and RGB features. Seg denotes that the segmentation output comes directly from the segmentation network, while
Clu denotes that the segmentation output is obtained from clustering.

Experiments | wmIlOU | Lyce | Ly | Lise miou mIO*U m:OU ml(?kU nlIOU
(Seg) (Seg,*N) (Seg,*NRGB) (Clu,*N) (Clu,*NRGB)

E-SCR2 0.2721 v 0.3733 - - - -

E-SCR5 0.2902 v 0.4621 - - - -

E-SCR10 0.3074 v 0.4711 - - - -

E-SCR20 0.3233 v 0.5286 - - - -

E-SCR2-* 0.2721 v v - 0.6851 0.4729 0.6758 0.3889
E-SCR5-* 0.2902 v v - 0.6798 0.4989 0.6706 0.6020
E-SCR10-* 0.3074 v v - 0.6992 0.5130 0.6710 0.6267
E-SCR20-* 0.3233 v v - 0.6852 0.5562 0.6741 0.6164
E-SCR2-* 0.2721 v v v - 0.6995 0.4724 0.6828 0.3274
E-SCR5-* 0.2902 v v v - 0.7134 0.4772 0.7001 0.2982
E-SCR10-* 0.3074 v v v - 0.7047 0.4796 0.6817 0.3130
E-SCR20-* 0.3233 v v v - 0.6904 0.5075 0.6894 0.6187

Table 7: Segmentation performance for different centroid feature spaces and for different amounts of superpixels to generate the pseudo-
masks. *N denotes that only the SMX (softmax) features are used to compute L., and L,,s., while *NRGB denotes that the feature space
comprises both SMX and RGB features. Seg denotes that the segmentation output comes directly from the segmentation network, while

Clu denotes that the segmentation output is obtained from clustering.

Experiments wmlou Loce | Leen | Lo miOU miOU miOU mlOU mioU
(Seg) (Seg,*N) (Seg,*NRGB) (Clu,*N) (Clu,*NRGB)
E-SCR20-SUP30 0.6272 v 0.6613 - - - -
E-SCR20-SUP50 0.6431 v 0.7133 - - - -
E-SCR20-SUP80 0.6311 v 0.7017 - - - -
E-SCR20-SUP30-* 0.6272 V|V - 0.6848 0.6847 0.7081 0.6859
E-SCR20-SUP50-* 0.6431 v | Vv - 0.7447 0.7368 0.7372 0.7136
E-SCR20-SUP80-* 0.6311 v | Vv - 0.7242 0.7355 0.7127 0.6761
E-SCR20-SUP30-* 0.6272 VIV |V - 0.6919 0.7071 0.6987 0.7076
E-SCR20-SUP50-* 0.6431 VI V|V - 0.7542 0.7133 0.7491 0.7294
E-SCR20-SUP80-* 0.6311 VAN VAN IV - 0.7294 0.7246 0.7268 0.7118
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3.7.5. Effect of the loss function terms

This section considers the effect of L., and L. on the segmentation results by analysing the performance
achieved in the experiments of groups G1, G2 and G3. From Table 6, one can see that the mIOU of
experiments in G2 is significantly higher than that of experiments in G1, where the maximum gap in mIOU
between G1 and G2 is 0.3118 (E-SCR2 and E-SCR2-N). As for the segmentation performance for G3
experiments, it is systematically above that of G2 experiments for the same width of the scribble
annotations and if centroids are built only from the softmax features. When the colour data is incorporated,

segmentation performance decreases from G2 to G3.

Table 7 also shows performance improvements from G2 experiments, i.e. when L., is incorporated into
the loss function, over the performance observed from experiments in G1, and, in turn, segmentation
results from G3 experiments are superior to that of G2 experiments. Therefore, the incorporation of the
Leen and L, terms into the loss function benefits performance, gradually increasing the mlOU of the
resulting segmentations.

Regarding the segmentation computed from clustering, the mIOU of experiments in G3 is also higher than
that of experiments in G2. In addition, it can be found out in Table 6 and Table 7 that the mIOU from
clustering in some G2 experiments is slightly higher than that for G3 experiments (e.g. E-SCR20-SUP30-N),
while the mlOU from segmentation in G2 is lower than that of G3. In other words, it seems that L, in
some cases, makes the segmentation quality from clustering deteriorate.

Overall, the incorporation of L., and L. improves segmentation performance and labelling from
segmentation turns out to be superior to that deriving from class centroids.

3.7.6.Impact of weak annotations and their propagation

In this section, we evaluate our approach under different weak annotations and their propagation, and
discuss on their impact on segmentation performance. To this end, we plot in Figure 16 the mIOU
(complementarily to Table 6 and Table 7), recall and precision values resulting after the supervision of
different sorts of weak annotations. A first analysis of these plots reveals that the curves corresponding to

the G3 experiments are above those for G1 and G2 groups for all the performance metrics considered.

Figure 16(a) shows that the mIOU values for the G2 and G3 groups are above those for G1 (the lower
baseline), which follows a similar shape as the wmIOU values, while those from G2 and G3 groups keep at
a more or less constant level for the different sorts of weak annotations. Globally, this behaviour clearly
shows that the scribbles are enough for describing the classes in this case of binary classification problem,
though the pseudo-masks (G2 and G3 groups) permits achieving a higher performance. The fact that the
lower baseline (G1 group) always achieves lower mIOU values also corroborates the relevance of the
Centroid Loss, despite its ultimate contribution to the segmentation performance is also affected by the
quality of the weak annotations involved, i.e. the pseudo-masks deriving from scribbles and superpixels for
the cases of the G2 and G3 groups.

Additionally, observing the precision curves shown in Figure 16(c), one can notice that the precision for
exclusively the weak annotations show a sharp decline when the weak annotations shift from scribbles to
pseudo-masks. As can be noticed from the pseudo-masks shown in the second row of Figure 15, when the
number of superpixels is low, e.g. 30, the pseudo-masks contain an important number of incorrectly

labelled pixels, significantly more than that of the scribble annotations, and this is the reason for the
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aforementioned decline. The recall curves, however, exhibit an upward trend as can be observed in Figure
16(b) because of the larger amount of information ultimately provided by the weak annotations. On the
other side, we can also notice that, in general, precision and recall values are higher for the G3 group than
for the G2 group, and both curves are above those for the G1 group. Finally, the output from clustering
does not clearly lead to a different performance, better or worse, over the alternative outcome from the
segmentation network.
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Figure 16: Performance metrics for the WSSS approach proposed in this work under different sorts of weak annotations. From left to right,
the three figures plot respectively the mlOU, the mean Recall, and the mean Precision. SUP30, SUP50

and SUP80 labels correspond to the use of 20 pixel-wide scribbles.

From a global perspective, all this suggests that (a) segmentation quality benefits from the use of pseudo-
masks, (b) overcoming always the lower baseline based on the use of exclusively scribbles, (c) despite the
incorrectly labelled pixels contained in pseudo-masks, (d) provided that the proper loss function is adopted,

e.g. the full loss expressed in equation (9 ), which in particular (e) comprises the Centroid Loss.

3.7.7.Comparison with other loss functions

In Table 8, we compare the segmentation performance of our approach with that resulting from the use
of the Constrained-size Loss L. and the SEC Loss L., for different variations of weak annotations. As for
the visual inspection task, the network trained with L is clearly inferior to the one resulting for our loss
function, and the same can be said for L,e, although, in this case, the performance gap is shorter, even
negligible when the width of the scribbles is of 20 pixels. When the pseudo-masks are involved, our

approach is also better though the difference with both L;,. and L, is shorter.
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Summing up, we can conclude that the loss function proposed in equation ( 9 ) outperforms both the

Constrained-size Loss L, and the SEC Loss L. on the visual inspection task.

Table 8: Comparison of different loss functions. mIOU values are provided. Best performance is highlighted in bold.

Weak Annotation Lg,e L. Ours
E-SCR2-N 0.6098 | 0.4366 | 0.6995
E-SCR5-N 0.6537 | 0.4372 | 0.7134
E-SCR10-N 0.6754 | 0.5486 | 0.7047
E-SCR20-N 0.6909 | 0.5624 | 0.6904

E-SCR20-SUP30-N | 0.7068 | 0.6397 | 0.6919
E-SCR20-SUP50-N | 0.6769 | 0.7428 | 0.7542
E-SCR20-SUP80-N | 0.7107 | 0.6546 | 0.7294

3.7.8.Final tuning and results

As has been already highlighted along the previous sections, the network trained by means of the loss
function described in equation ( 9 ), which in particular comprises the Centroid Loss, attains the best
segmentation performance against other approaches for the visual inspection task. In order to check
whether segmentation performance can increase further, in this section we incorporate a dense CRF as a
post-processing stage of the outcome of the network. Table 9 collects metric values for the final
performance attained by the proposed WSSS method and as well by the upper baseline method (E-FULL).
To assess the influence of the CRF-based stage, in Table 9, we report mlOU, precision and recall values,
together with the F; score.
Table 9: Segmentation results for the full loss function (G3). Seg denotes that the segmentation output comes directly from the

segmentation network, while Clu denotes that the segmentation output is obtained from clustering. *CRF refers to the performance

(mIOU) after dense CRF post-processing. Best performance for the WSSS approach is highlighted in bold.

Experiments wmlou [y][e]V] mRec mPrec Fqy mlOU mRec mPrec Fqy *CRF
(seg) (seg) (seg) (seg) (clu) (clu) (clu) (clu) (seg)

E-SCR2-N 0.2721 0.6995 0.6447 0.6452 0.6449 0.6828 0.7663 0.5803 0.6605 0.7068
E-SCR5-N 0.2902 0.7134 0.6539 0.6542 0.6540 0.7001 0.7447 0.6015 0.6655 0.7212
E-SCR10-N 0.3074 0.7047 0.6797 0.6332 0.6556 0.6817 0.7741 0.5772 0.6613 0.7241
E-SCR20-N 0.3233 0.6904 0.6917 0.6081 0.6472 0.6894 0.7816 0.5507 0.6461 0.7172
E-SCR20-SUP30-N 0.6272 0.6919 0.7937 0.7081 0.7485 0.6987 0.7806 0.5946 0.6750 0.7489
E-SCR20-SUP50-N 0.6431 0.7542 0.7543 0.7567 0.7555 0.7491 0.7725 0.6830 0.7250 0.7859
E-SCR20-SUP80-N 0.6311 0.7294 0.7452 0.7397 0.7424 0.7268 0.7758 0.6200 0.6892 0.7693
E-FULL 1.0000 0.8333 0.8537 0.9119 0.8818 - - - - 0.8218

Regarding the visual inspection task, Table 9 shows that case E-SCR20-SUP80-N leads to the best
segmentation mIOU (0.7542). After the incorporation of the dense CRF, the mIOU reaches a value of
0.7859, with a performance gap with E-FULL of 0.8333 — 0.7859 = 0.0474. Case E-SCR20-SUP30-N attains
the highest recall (0.7937), but the corresponding precision (0.7081) and F; score (0.7485) are not the
highest; the mIOU is also the second lowest (0.6919). This is because the segmentation result for E-SCR20-
SUP30-N contains more incorrect predictions than E-SCR20-SUP50-N. Consequently, a configuration of 20-
pixel scribbles and 50 superpixels for pseudo-mask generation seem to lead to the best performance, with
a slightly increase thanks to the CRF post-processing stage. The outcome from clustering is not far in quality
to those values, but, as can be observed, it is not as good (the best mIOU and F; scores are, respectively,
0.7491 and 0.7250). Further, it must be noticed that all the aforementioned results from pseudo-masks
whose wmlIOU is slightly above 60%.
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From a global perspective, the results obtained indicate that 20-pixel scribbles, together with a rather
higher number of superpixels, so that they adhere better to object boundaries, are the best options. In
comparison with the lower baseline (G1 group), the use of the full loss function, involving the Centroid
Loss, clearly makes training improve segmentation performance significantly, with a slight decrease
regarding full supervision. Finally, segmentation results deriving from clustering are not better.

Figure 17 shows examples of segmentation results. As can be observed, the segmentations resulting from
our approach are very similar to those from the upper baseline (E-FULL). Moreover, as expected, results
from clustering are basically correct though tend to label incorrectly pixels (false positives) from around
correct labellings (true positives).

,:'4
% ud!

, ”# j ;
. N ‘ ¢ J N ° °

original image full mask E-FULL E-SCR20-N (seg) E-SCR20-SUP50-N (seg) E-SCR20-N (clu) E-SCR20-SUP50-N (clu)

Figure 17: Examples of segmentation results: (1st column) original images, (2nd column) full mask, (3rd column) results of the fully
supervised approach, (4th & 5th columns) segmentation output for E-SCR20-N and E-SCR20-SUP50-N after the use of the dense CRF,
(6th & 7th columns) segmentation output from clustering for the same configurations.

Summing up, the use of the Centroid Loss has made possible training a semantic segmentation network
using a small number of labelled pixels. Though the performance of the approach is inferior to that of a
fully supervised approach, the resulting gap has turned out to be rather short, given the challenges arising

from the use of weak annotations.
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V. Conclusions

On the one hand, this report describes a two-stage arbitrarily-oriented object detection method for
regressing the parameters of oriented bounding boxes for the case of CBC detection. The first stage of our
solution comprises a feature pyramid architecture that has been embedded in an SSD-like network to fuse
the available feature maps, giving rise to the FPSSD network. Besides, prior boxes for un-oriented bounding
box regression have been chosen on the basis of a clustering process over the available datasets. In the
second stage, a simple but effective neural network has been designed to regress the parameters of
oriented bounding boxes. The design process has considered two parameterizations of oriented bounding
boxes, being the two-target RBox regression model the variant with highest performance. The

experimental results of the whole solution show improved performance over other detection approaches.

On the other hand, this report also describes a weakly-supervised segmentation approach based on
Attention U-Net. The loss function comprises three terms, namely a partial cross-entropy term, the so-
called Centroid Loss and a regularization term based on the mean squared error. They all are jointly
optimized using an end-to-end learning model. As has been reported in the experimental results section,
for the visual inspection task, our approach can achieve competitive performance with regard to full
supervision, with a reduced labelling cost to generate the necessary semantic segmentation ground truth.
Under weak annotations of varying quality, our approach has been able to achieve good segmentation

performance, counteracting the negative impact of the imperfect labellings employed.

The performance gap between our weakly-supervised approach and the corresponding fully-supervised
approach has shown to be rather reduced regarding the mIOU values, although non-negligible, as well as
for precision and recall. This suggests looking for alternatives even less sensitive to the imperfections of
the ground truth deriving from the weak annotations, aiming at closing the aforementioned gap. In this
regard, future work will focus on other deep backbones for semantic segmentation, e.g. DeeplLab (Chen,
Zhu, Papandreou, Schroff, & Adam, 2018).
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