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Executive summary 
This document corresponds to deliverable D3.1 entitled "Simultaneous localisation and geometry inference 

on a metal plate", planned at M27 of the project. The work carried out in this phase of the project aims to 

develop a control methodology based on Ultrasonic Guided Waves (UGW) in order to meet the following 

objectives: 

 The detection of the plate boundaries (i.e., welding joints) 

 The simultaneous recovery of plate geometry and robot localisation 

I. Introduction 
In order to meet these objectives, a collaboration between the CETIM, CGE (CETIM Grand Est) and the 

CNRS has been organised around two major subjects that have been conducted in parallel, but are meant 

to be jointly integrated in the final robotic setup: 

- The first subject consists in carrying out a numerical and experimental analysis of the interaction 

between different guided wave modes, and representative discontinuities of a ship's hull (welding 

joint, ribs-stiffeners). The objective of this phase is to define the sensitivity of each guided wave 

mode, as function of the discontinuities encountered by the ultrasonic wave and thus to determine 

the most suitable sensor technology. At the end of this work, we selected a transducer in order to 

generate the previously selected wave and to optimise the resolution of the guided wave 

measurement results in order to simplify the interpretation.  

- The second subject concerns the elaboration of a methodology to achieve simultaneous 

localisation and plate geometry inference using ultrasonic guided waves. The considered setup 

only requires a collocated emitter/receiver pair of piezoelectric transducers that is mounted on a 

mobile platform. By relying on the acoustic reflections on the plate boundaries, accurate sensor 

localisation and plate geometry reconstruction can be achieved. The proposed approach is tested 

experimentally, in a laboratory environment, and using isolated metal plates. Industrial 1MHz 

contact piezoelectric transducers are used for signal in emission and reception, and a low order 

antisymmetric acoustic mode is selected for the proof-of-concept experiments.  

- Acoustic localisation and mapping typically require prior knowledge of the wave propagation. 

However, this may not be a realistic assumption when considering a practical robotic inspection 

operation (due to variations of the local structure properties and operation conditions). Hence, we 

have elaborated a methodology to simultaneously localise plate boundaries and recover the 

propagation model. The experimental results show that it is beneficial to the targeted objective. 

The results of this work have been the subject of four research papers: 

- Application of ultrasonic guided waves to localisation and geometry inference on a metal plate, (in 

the process of submission in Ultrasonics, 2022). 

- On-plate localisation and mapping for an inspection robot using ultrasonic guided waves, 

published in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 

(Pradalier, et al., 2020). 
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- A FastSLAM approach integrating beamforming maps for ultrasound-based robotic inspection, 

published in IEEE Robotics and Automation Letters (Ouabi, et al., 2021). 

- Learning the propagation properties of rectangular metal plates for Lamb wave-based mapping, 

published in Ultrasonics (Ouabi, et al., 2022). 

Finally, the procedure followed for the selection of the ultrasonic sensor is explained. Additional tests are 

to be carried out to decide on the sensor choice.  

II. Application of ultrasonic guided waves to 
localisation and geometry inference on a 
metal plate 

In this part, the work carried out within the framework of WP3, task D3.1 is organized into four papers, 
three of which have already been published and a fourth one that is currently under review. These papers 
are attached at the end of this deliverable.  

► The first paper (Walaszek, et al., 2022) summarises the numerical and experimental study 
carried out on a representative model to better understand the interaction between the 
different types of guided waves with the obstacles present in the structure of a boat hull (welds, 
ribs-stiffeners, and transverse webs). 

► In (Pradalier, et al., 2020), a first proposal for the use of UGW for localisation and mapping of 
the autonomous robot on a steel plate is presented. 

► Then, in (Ouabi, et al., 2021), a novel FastSLAM approach for a robotic system inspecting 
structures made of large metal plates is presented. 

► Finally, (Ouabi, et al., 2022) proposes a novel approach based on GW for autonomous navigation 
and environment sensing.  

The abstracts of the four papers are presented below: 

Application of ultrasonic guided waves to localisation and geometry 

inference on a metal plate 

H. WALASZEK1, Q.A.VU1, A. SAIDOUN1, N. SAMET2, E. NDIAYE2, J. THABOUREY2 

1CETIM, 52 avenue Félix Louat, Senlis - France  

2 CETIM Grand Est, 21 rue de Chemnitz, BP 2278, Mulhouse - France  

 

ABSTRACT  

Non-destructive inspection of large structures represents one of the major challenges in various industrial sectors 

(energy, oil & gas, naval, etc.). In recent years, non-destructive testing methods, in particular ultrasonic methods, 

have been increasingly integrated into autonomous robots in order to carry out faster inspections, and therefore 

more reliable maintenance without the direct intervention of human operators. The benefit of using a robot during 

the inspection of large structures consists in the automatization of ultrasonic probe handling and motion, with 

controlled and reproduceable coupling of ultrasonic probes with the structure to be inspected. Some robotized 

ultrasonic crawlers are currently available, but are based on local ultrasonic measurements, that leads to important 

time of operation to scan large hull surfaces. In addition to their potential to detect defects, ultrasonic methods, 

and in particular guided waves, are able to propagate for several meters. Guided wave could allow precise 



BugWright2                Deliverable D3.1 
Grant Agreement No. 871260      Dissemination level: PU 

Page 5 version 1 status: released 

localisation of the robot and also mapping of structural configurations based on acoustic characteristics of reflected 

or transmitted waves. In the present work, the boat hull case is considered. A numerical and experimental analysis 

was carried out in order to study the interactions between different guided wave modes and discontinuities (welds, 

ribs-stiffeners, and transverse webs). The final objective of this study is the development and integration of an 

inspection technology in an autonomous robot system applied to the control of large structures (ex: boat hull, tank, 

etc.). 

Submission in Ultrasonics (2022) 

 

On-plate Localisation and mapping for an inspection robot using ultrasonic 

guided waves1 

C. PRADALIER1, O. OUABI1, P. POMAREDE1, J. STECKEL2, 3 

1International Research Lab 2958 Georgia Tech-CNRS, Metz, France 

2University of Antwerp, Antwerp, Belgium 

3Flanders Make Strategic Research Center, Lommel, Belgium 

ABSTRACT 

This paper presents a proof-of-concept for a localisation and mapping system for magnetic crawlers performing 

inspection tasks on structures made of large metal plates. By relying on ultrasonic guided waves reflected from 

the plate edges, we show that it is possible to recover the plate geometry and robot trajectory to a precision 

comparable to the signal wavelength. The approach is tested using real acoustic signals acquired on metal plates 

using lawn-mower paths and random-walks. To the contrary of related works, this paper focuses on the practical 

details of the localisation and mapping algorithm. 

Published in: IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020. 

 

A FastSLAM Approach Integrating Beamforming Maps for Ultrasound-

Based Robotic Inspection of Metal Structures2 

O. OUABI1, P. POMAREDE1, N. F. DECLERCQ1,3, M. GEIST2, C. PRADALIER1 

1International Research Lab 2958 Georgia Tech-CNRS, Metz, France 

2Google Research, Brain Team, Paris, France 

3Georgia Institute of Technology, Atlanta, GA30332-0250 USA 

 

ABSTRACT 

We present a novel FastSLAM approach for a robotic system inspecting structures made of large metal plates. 

By taking advantage of the reflections of ultrasonic guided waves on the plate boundaries, it is possible to recover, 

with enough precision, both the plate shape and the robot trajectory. Contrary to our previous work, this approach 

considers the dispersive nature of guided waves in metal plates. This is leveraged to construct beamforming maps 

from which we solve the mapping problem through plate edges estimation for every particle, in a FastSLAM 

fashion. We demonstrate, with real acoustic measurements obtained on different metal plates, that such a 

framework achieves more accurate results, while the complexity of the algorithm is sensibly reduced. 

Published in: IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 6, NO. 2, APRIL 2021 

 

                                                             
1 DOI: 10.1109/IROS45743.2020.9340936 
2 DOI: 10.1109/LRA.2021.3062600 
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Learning the propagation properties of rectangular metal plates for Lamb 

wave-based mapping3 

O. OUABI1, P. POMAREDE1, N. F. DECLERCQ1, 3, N. ZEGHIDOUR2, M. GEIST2, C. PRADALIER1 

1International Research Lab 2958 Georgia Tech-CNRS, Metz, France 

2Google Research, Brain Team, Paris, France 

3Georgia Institute of Technology, Atlanta, GA30332-0250 USA 

 

ABSTRACT 

The inspection of sizeable plate-based metal structures such as storage tanks or marine vessel hulls is a 

significant stake in the industry, which necessitates reliable and time-efficient solutions. Although Lamb waves 

have been identified as a promising solution for long-range non-destructive testing, and despite the substantial 

progress made in autonomous navigation and environment sensing, a Lamb-wave-based robotic system for 

extensive structure monitoring is still lacking. Following previous work on ultrasonic Simultaneous Localisation 

and Mapping (SLAM), we introduce a method to achieve plate geometry inference without prior knowledge of 

the material propagation properties, which may be lacking during a practical inspection task in challenging and 

outdoor environments. Our approach combines focalization to adjust the propagation model parameters and 

beamforming to infer the plate boundaries location by relying directly on acoustic measurements acquired along 

the mobile unit trajectory. For each candidate model, the focusing ability of the corresponding beamformer is 

assessed over high-pass filtered beamforming maps to further improve the robustness of the plate geometry 

estimates. We then recover the optimal space-domain beamformer through a simulated annealing optimization 

process. We evaluate our method on three sets of experimental data acquired in different conditions and show that 

accurate plate geometry inference can be achieved without any prior propagation model. Finally, the results show 

that the optimal beamformer outperforms the beamformer resulting from the predetermined propagation model in 

non-nominal acquisition conditions. 

Published in: Ultrasonics 106705, 2022. 

 

III. Sensor and Mapping Concepts  

Based on the results presented in (Walaszek, et al., 2022), the candidate sensor for our application should 

meet the following requirements:  

- modal selectivity on transmission and detection: generate/detect properly the SH0 mode with the 

best SNR possible  

- omnidirectional transmission and reception 

- the echo mode will be preferred (transmitter and receiver probe at the same location) 

In order to meet these conditions, two innovative technologies will be tested in this project: 

► PZT omnidirectional sensors 

Piezoelectric sensors are sensors widely used in non-destructive ultrasonic testing. They are often 

used to produce bulk waves. When they are used to generate guided waves, they can be coupled 

with a wedge or often with a strong mechanical pressure to ensure correct acoustic coupling. The 

desired mode can be produced but it is on one hand directive and on the second hand often 

followed by another non-desired mode. Unwanted modes are often sources of disturbances and 

complicate the analysis and understanding of signals due to their dispersion. Directional sensors 

are not suitable for our TFM reconstruction application which requires an omnidirectional sensor. 

                                                             
3 DOI: https://doi.org/10.1016/j.ultras.2022.106705 
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Generating a mono-mode with omnidirectional piezoelectric sensor is not an easy task, several 

authors have worked on this subject and the best solutions are exposed in (Miao, 2017). 

 

Figure 1 present a new design of omnidirectional sensor which allows to generate the only fundamental 

mode SH0 is shown (Miao, 2017). 

 

Figure 1: New omnidirectional sensor design to generate SH0 waves  

The sensor is a ring array of twelve trapezoidal d24 face shear PZT elements. Each PZT element can produce 

face shear deformation, thus effective circular shear deformation can be done. The performance of 

omnidirectional SH0 wave piezoelectric transducer (OSH-PT) has been examined by both finite element 

simulations and experimental tests. It was found that OSH-PT can excite and receive pure SH0 waves in a 

selected frequency range where no other undesired wave modes are generated such as Lamb waves. 

In the same context Huan (Huan, 2019) & (Huan, 2019) proposed a sensor solution for the omnidirectional 

wave generation of the fundamental mode SH0 (Figure 2).  

 

 

Figure 2: Schematic structure of the proposed omnidirectional SH wave piezoelectric transducer (OSH-PT): (a) a thickness poled PZT ring; 
(b) polarization and wiring of the 12 evenly divided elements of the PZT ring; (c) polarization and electrodes of a single PZT element; (d) 

picture of the actually fabricated OSH-PT 
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In 2008, Lingyu Yu and Victor Giurgiutiu from the University of South Carolina (Lingyu, 2008) were working 

on an in-situ method for damage detection in thin-wall structures using embedded 2-D ultrasonic phased 

arrays with Piezoelectric Wafer Active Sensors (PWAS). This method uses scanning beams of guided Lamb 

waves that can travel for large distances with little energy loss. The PWAS phased array rely on the selective 

excitation of single-mode guided waves that are best adapted for phased array damage detection for a 

given plate thickness and material characteristics.  

The authors tested several array configurations with different geometrical shapes and concluded that 

rectangular array provides the suitable result. This configuration shows that it can achieve single 

beamforming within 360° range with an optimized combination of good directionality and compact size. 

 

 
Figure 3: Circular PWAS illustration: (a) the schematic; (b) a circular PWAS constrained by structural stiffness, kstr (ω) 

Even if experiments are conducted at very low frequency ranges, A0 and S0 Lamb waves exist 

simultaneously. Giurgiutiu (Giurgiutiu, 2005) showed that the PWAS length 2a, plate thickness 2d, and 

material properties µ and λ, it is possible to find frequencies at which only one mode (A0 or S0) is existing 

(Figure 3).  

 

► Magnetostrictive omnidirectional sensors 

Magnetostrictive sensors are widely used for GW pipeline control. Figure 4 shows an example of a 

magnetostrictive system. It is composed of a magnetised metal strip and a coil on top. To generate 

guided waves by magnetostriction, a pulsed current is introduced into a transmitting coil coupled to a 

ferromagnetic material. The local modification of the magnetisation of the material is accompanied by 

a deformation of the material in a direction parallel to the applied magnetic field. This deformation, 

which corresponds to the magnetostrictive effect, generates a shear horizontal wave. The probes used 

enable the generation of waves from a few kHz to a few hundred kHz which propagate at the speed of 

ultrasonic waves in the material. When this wave is reflected by the presence of a defect or obstacle 

and reaches the receiving coil, the magnetic flux in this coil changes. This change induces an electric 

current in the "receiving" coil which is proportional to the amplitude of the mechanical wave. This 

current is then amplified, conditioned, and analysed. 
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Figure 4: magnetostrictive guided wave system - MsSR3030 (SWRI) 

In the context of an application on boat hulls, the system presented Figure 4 is not completely adapted. 

Despite the good selectivity of the SH mode, the magnetostrictive probe remains directional. However, a 

recent product from SWRI company associating the magnetostrictive probe with a rotating system allowing 

to perform a 360° scan synchronised with the acquisition system. Figure 5 shows the Mst 360 probe. The 

scanner rotates the MsT for data collection at regular angular intervals using a single or multiple 

frequencies.  

 

Figure 5: MsT 360 Probe (SWRI)  

Feasibility tests will be conducted with this new probe on the mock-up, first to finalise the test plan on the 

location of obstacles and further, for Task 3.2 “Defect localisation by acoustic triangulation and 

tomography” for the detection of defects.  

It shall be noted that other transducers called “EMAT” are able to produce guided waves, without physical 

contact of the probe with the plate (Salzburger, 2013). These transducers do not need either coupling 

agent, which is a substantial advantage. The GW EMAT transducers available on the market are directional, 

but some papers describe omni-directional solutions. Such a solution was not studied because we favoured 

more advanced methods in TRL (Technology readiness level) at this stage of the study. 
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IV. On-plate Simultaneous Localisation and 
Mapping Framework 

This section presents the Simultaneous Localisation and Mapping (SLAM) framework based on guided 

waves that we have elaborated. Our objective is to recover simultaneously the sensor position and the 

metal plate geometry (i.e. the position of weld joints on a large structure) by relying on the acoustic 

reflections of the excited wave on the plate boundaries. We assume that the acoustic sensors and the 

selected acoustic mode meet the requirements specified in the previous section.  

As the sensor is to be mounted on a robotic platform, it is assumed that noisy odometry information 

(typically provided by the wheels encoders or Inertial Measurement Unit) is available. It should also be 

noted that other localisation systems (such as ultra-wide band beacons) may be used in combination with 

guided waves for accurate robot localisation, although it is not yet the case in the conducted experiments. 

 

 

 

 

 

 

Acoustic SLAM has been the subject of various research works. However, the methods presented in the 

literature that tackle the similar problem of room shape reconstruction using acoustic echoes are evaluated 

in simulation and rely on important assumptions that may not be applicable in practice to ultrasonic 

measurements. Hence, we have first developed a proof-of-concept approach based on a FastSLAM 

algorithm (Pradalier, et al., 2020) for solving the online SLAM problem on an isolated metal panel, while 

tackling echo detection (for retrieving a list of ranges from the acoustic measurements) and association 

(grouping the acoustic echoes from different observation positions that originate from a reflection on the 

same boundary).  

We have subsequently introduced beamforming to achieve plate boundary mapping (Ouabi, et al., 2021), 

which alleviates the need for specifically tackling the echo detection and echo association problems, but 

we restrain the estimated geometries to rectangular shapes. This proved to lead to more accurate and 

robust estimation results. Furthermore, the rectangular geometry constraint is not considered as an issue, 

as ship hulls and storage tanks are made in majority of rectangular metal panels. 

Figure 6: Left, close-up of the Altiscan magnetic crawler on a storage tank. Right, omnidirectional guided waves  

reflecting on the edges of a metal panel in a simulated environment. 
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In our experiments, we have considered the A0 Lamb wave mode, which is omnidirectional and is 

predominant in low frequencies. Our approach is tested using acoustic measurements that are acquired by 

moving manually on the metal surface, a pair of nearly collocated V103-RM U8403008 contact piezoelectric 

transducers (see Fig.4, left). The results show that centimetre precision in localisation and mapping can be 

achieved on a small aluminium panel (600x450x6mm) and a larger steel plate (1700x1000x6mm) in a 

laboratory environment, and limited odometry noise conditions, as illustrated by Figure 4, right. Hence, 

this demonstrates the feasibility of guided wave-based SLAM and represents a first step towards long-

range robotic inspection. The detailed presentation of the work is available in the article (Ouabi, et al., 

2021).  

The methods mentioned above typically require prior knowledge of the acoustic signal propagation in the 

metal plate. However, the hypothesis that the propagation model is known a priori may not be realistic for 

a practical inspection task on a large metal structure due to a wide variety of external perturbations that 

can significantly affect the acoustic signals, and to a lack of knowledge of the structure physical condition 

(which is the reason why it is being inspected). For these reasons, we have addressed the problem of 

simultaneous acoustic mapping and propagation model calibration.  

The proposed approach relies on optimal beamforming, for achieving plate geometry inference 

concurrently to propagation model calibration by relying on measured data itself. The experimental results 

obtained in a laboratory environment demonstrate its efficiency, with the notable result that optimal 

beamforming leads to better reconstruction results when the acquisition conditions deteriorate compared 

to a fixed predetermined propagation model. The details on both the methodology and experimental 

results are available in (Ouabi, et al., 2022). 

  

Figure 7: Left, picture of the experimental setup for acquiring the acoustic measurements.  

Right, an example of SLAM results obtained 
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V. Conclusion 
This document summarizes the work carried out in Task 3.1 “Simultaneous Localisation and Geometry 

Inference on a metal plate”. The main conclusions are as follow:  

Numerical simulations enable the comparison between the sensitivity of the different modes of GW in 

relation with the detection of discontinuities (welding, stiffeners). Due to its low dispersion and the 

absence of mode conversion, SH0 seems to be the best candidate for our application. 
 The experimental tests carried out on a representative mock-up have allowed to validate all the 

numerical results.  

 The proposed imaging methodology, which gives a global view of the GW response of the area 

under scan improves the resolution of the results and also simplifies their analysis 

 A demonstration of the feasibility of SLAM on a metal structure using omnidirectional guided 

waves 

 The automatic calibration of the propagation model for plate geometry mapping by relying on the 

acoustic data itself. 
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A FastSLAM Approach Integrating Beamforming
Maps for Ultrasound-Based Robotic Inspection of

Metal Structures
Othmane-Latif Ouabi , Graduate Student Member, IEEE, Pascal Pomarede, Matthieu Geist,

Nico F. Declercq, and Cédric Pradalier , Member, IEEE

Abstract—We present a novel FastSLAM approach for a robotic
system inspecting structures made of large metal plates. By taking
advantage of the reflections of ultrasonic guided waves on the plate
boundaries, it is possible to recover, with enough precision, both
the plate shape and the robot trajectory. Contrary to our previous
work, this approach takes into account the dispersive nature of
guided waves in metal plates. This is leveraged to construct beam-
forming maps from which we solve the mapping problem through
plate edges estimation for every particle, in a FastSLAM fashion.
It will be demonstrated, with real acoustic measurements obtained
on different metal plates, that such a framework achieves more
accurate results, while the complexity of the algorithm is sensibly
reduced.

Index Terms—Industrial robots, range sensing, SLAM.

I. INTRODUCTION

IN THIS work1, we describe a new FastSLAM approach [1]
to achieve Simultaneous Localization and Mapping (SLAM)

for a robotic system relying on Ultrasonic Guided Waves
(UGWs) to support inspection tasks on large metal structures
such as storage tanks or ship hulls. In Structural Health Mon-
itoring (SHM), acoustic tomography techniques can be used
for defect detection and characterization, but they rely on the
accurate prior knowledge of the positions of the sensors which
are integrated into the structure [2], [3]. To deploy similar
methods on a robotic platform, recovering the robot position
with respect to the individual metal plates may be beneficial, as
it could lead, in combination with external localization systems,
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Fig. 1. (Left) A magnetic crawler carrying out an inspection task on a metal
structure. (Right) Guided waves reflected by the edges of a plate in a simulation
environment. We aim to enable on-plate localization and mapping with a high
precision for magnetic crawlers equipped with acoustic transducers, and relying
on such ultrasonic reflections.

to precise localization of the mobile unit, and thus, to accurate
inspection results.

On metal plates, guided waves are often generated by applying
piezo-electric transducers in contact with the surface. These
waves propagate radially around the emitter through the plate
material, and potentially over large distances. When encounter-
ing the plate edges, these waves are reflected perpendicularly,
and a receiver can sense the reflections. In this setup, the resulting
acoustic data carry essential information on the source position
and the plate geometry.

In this work, we consider a mobile unit equipped with acoustic
transducers for both emission and reception, and moving on a
metal surface. We leverage the sensing of the ultrasonic reflec-
tions to estimate both the plate shape and the robot trajectory. The
principle of this approach is illustrated in Fig. 1. In the robotic
field, this problem is known as Simultaneous Localization and
Mapping (SLAM).

One of the significant challenges arises from the dispersive
nature of UGWs [4]. It means that the propagation velocity
is a function of the wave frequency, resulting in a waveform
deformation when the propagation distance increases. Besides,
propagation in metal plates is highly reverberant. These char-
acteristics account for the relative complexity of acoustic data
and call for specific processing methods to achieve on-plate
localization and mapping with high accuracy. On the robotic
aspect, recent works consider the similar problem of room
shape reconstruction from acoustic echoes [5], [6]. As the sound
velocity in the air is constant, the determination, from the mea-
surements, of the first-order reflections is not a significant issue.
However, identifying several echoes from guided wave data is
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Fig. 2. Illustration of wave dispersion in plates with simulated data. The
excitation signal is in blue, the signal propagated after 0.5 meters in orange,
and the signal propagated after 2 meters in red.

more difficult due to the wave dispersion and the wave packets
overlapping.

In our previous work [7], ultrasonic measurements on metal
plates have proven to yield sufficient information to provide both
localization and mapping capabilities on metal plates. However,
the dispersive nature of the waves was not taken into account
and the relative complexity of the algorithm may jeopardize
its robustness and accuracy. In this paper, we present an al-
ternative method to solve the SLAM problem from ultrasonic
measurements. First, a wave propagation model is introduced
and is leveraged to detect acoustic reflections. From them, we
build beamforming maps [8] which are subsequently integrated
into a FastSLAM framework to solve the mapping problem.
Our approach achieves more accurate results than our previous
method on real data, with less algorithmic complexity.

In summary, our contributions are the introduction of prop-
agation models and the integration of beamforming maps in
FastSLAM to achieve on-plate Simultaneous Localization and
Mapping with high accuracy for robotic inspection.

II. RELATED WORK

On the one hand, standard methods to inspect large metal
structures consist in deploying a mobile robot to perform point-
by-point thickness measurements with an acoustic probe, but
the entire surface cannot be inspected in a reasonable amount of
time due to the limited surface of the transducer. On the other
hand, UGWs have been successfully used by SHM systems
to inspect large structures such as pipelines or rails [4], [9],
but the transducers are integrated into the structure and their
position is known accurately. Hence, outside of the authors’
works, UGWs-based techniques have not been deployed on a
robotic system, nor have guided waves proven to yield accurate
localization capabilities which are critical for such methods to
work.

Moreover, UGWs propagation is dispersive, which means that
the longer the distance a wave packet travels in a metal plate, the
more it deforms. Fig. 2 illustrates this phenomenon. It shows that
the shape of the signal is significantly different after propagating
over two meters. In SHM, the chosen frequency range generally
lies in a dispersion-limited bandwidth, but for our case-study,
waves might propagate over much larger distances. Hence, wave
dispersion may still have some effects on the signals, and shall
not be neglected. In the literature, the use of propagation models
in the context of localization and mapping on metal structures
has not been thoroughly investigated. This work aims to answer
this need.

In typical guided wave data, there are numerous echoes due
to the multiple reflections on the plate edges and their number

increases exponentially with the observation time. In addition,
the wave packets overlap because of the wave dispersion. The
consequence is that it is very challenging to recover individ-
ual wave-packets from the mixture data [10]. Therefore, most
of the recent SHM techniques still rely only on the incident
wave packet [3], [4], [11], [12]. For on-plate localization and
mapping purposes, however, the retrieval of multiple echoes
is essential, as they all provide range-only information to the
edges. In the echo detection literature, time-delay estimation
techniques have been successfully applied to ultrasound waves
in the air [13], [14] but in a non-dispersive context. In [7], we
used L1-regularized least squares to retrieve the multiple echoes
without taking into account wave dispersion. Here, we rely on a
wave propagation model to determine, through correlation with
acoustic data, the likelihood of a reflection over a full range of
distances to the transducers. In this new setup, the resolution of
the difficult echo association problem is no longer required.

Recently, there have been attempts to infer a plate geometry
from guided waves data [15]. Yet, non-dispersive propagation
models are used, and the sensors are integrated into the structure.
In robotics, the most similar problem is room shape reconstruc-
tion from acoustic echoes [5], [6]. However, they rely on sound
waves propagating in the air without dispersion and do not con-
sider the association problem to determinate the wall from which
each echo originates. In [7], we rely on the most likely echo-line
association but the overall algorithm is rather complicated due
to the map management, and its robustness is limited. Here,
from the likelihoods of reflection, we build beamforming maps
to estimate the plate shape and limit ourselves to rectangular
geometries (which are to be expected in our application). Then,
these elements are integrated into a FastSLAM algorithm to
achieve localization and mapping simultaneously.

In summary, we present a new method that efficiently inte-
grates wave propagation models from the guided waves theory
and beamforming maps in a FastSLAM algorithm to achieve
more accurate on-plate localization and mapping results with
less algorithmic complexity comparing to our previous method.
The results obtained with experimental acoustic data from dif-
ferent metal plates support our claim.

III. METHOD

In this work, we are considering a mobile unit equipped with a
co-localized emitter/receiver pair of transducers and moving on
a metal surface. At the ith scanning position, the emitter sends
a pulse s(t) to excite guided waves in the plate material, and
the receiver collects the acoustic response zi(t) which contains
the ultrasonic echoes. We intend to use these data and the robot
odometry to recover accurately both the plate shape and the robot
trajectory.

A. Measurement Model

Acoustic measurements essentially consist in a succession of
the reflections of the excitation wave on the plate boundaries. As
the small-sized corrosion patches we aim to detect with robotic
inspection may not act as reflectors, their potential effect is
neglected for the SLAM problem. Under the assumption that the
material is isotropic, the propagation linear, and the reflections
on the edges are orthogonal, a standard measurement model
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to reverberation is the image source model [16]. It relies on
the fact that each reflection from the plate boundaries can be
considered as a signal originating from a fictional source, which
is deduced from the real source position and the reverberant
media geometry. In metal plates, the image source model can
be leveraged to account for first order as well as higher order
reflections, resulting in the following measurements:

zi(t) =
∑

x∈I(xi)

g(x,xi, t) ∗ s(t)

wherexi = [xi, yi] is the position of the robot during time step i,
I(xi) the set of the image sources positions when the real source
is in xi, g(x,xi, t) the acoustic response of the plate to an im-
pulse being generated in x and received in xi, and ∗ denotes the
convolution operation. In a non-dispersive media, the impulse
response is simply given by g(x,xi, t) = δ(t− ||x−xi||

c ), where
δ denotes the Dirac distribution, and c is the constant propagation
velocity. It results in waves propagating at a constant speed and
without distortion. In a dispersive media like metal plates, a
well-suited model of the propagation is given by the solutions
of the Helmholtz equation [17]. For an ideal isotropic media, the
impulse response is only a function of the propagation distance
r between the (fictional) source and the receiver. Moreover, it is
usually reduced, in the Fourier domain, to:

ĝ(r, ω) ≈ e−jk(ω)r/
√

k(ω)r. (1)

where k(ω) is the wavenumber of the major acoustic mode, and
its non-linear dependency with respect to the pulsation ω is the
typical characteristic of dispersive propagation. More details on
how to determine this relation given prior information on the
plate material can be found in the literature [4].

B. Correlation-Based Echo Detection

With the aim to retrieve the distances of the robot to the
edges from data zi(t), we use the designed propagation model to
estimate the likelihood that an orthogonal reflection occurred at a
distance r. First, we consider the signal that would only contain
such a reflection: ẑ(r, t) = ĝ(2r, t) ∗ s(t). Next, we build the
correlation signal to assess the likelihood that this pattern is
present within the measurement:

z′i(r) =
〈zi(t), ẑ(r, t)〉√〈zi(t), zi(t)〉〈ẑ(r, t), ẑ(r, t)〉

(2)

where 〈., .〉 denotes the scalar product in the domain of contin-
uous signals: 〈u(t), v(t)〉 = ∫ +∞

−∞ u(τ)v(τ)dτ. As the resulting
signal z′i presents oscillations consistent with the wave spatial
periodicity, it is more convenient to only work with its envelope
that we will call zi(r) for simplicity (which shall not be mistaken
with the temporal signal zi(t)):

zi(r) = |z′i(r) + jH(z′i)(r)| (3)

where H denotes the Hilbert transform operator. Hence, the
resulting signal zi takes its values only between 0 and 1, and
a higher value at r translates into a high likelihood that a
reflection occurred at such a distance. In summary, by looking
at the local maxima of zi(r), one can deduce the most likely
reflections. Besides, it is noteworthy that a single measurement
cannot provide enough information to determine an edge without

ambiguity, as all the lines tangent to the circle with radius r and
centered at the sensors position may equally account for the
correlation measurement.

C. Map Estimation Via Beamforming

Similarly to our previous work, the map is represented by a
set of lines: M = {rl, θl}l=1...4 where the parameters (rl, θl)
define the line equation in the 2D plane with:

x · cos θl + y · sin θl − rl = 0

in a non-mobile frame with respect to the plate. Moreover, as
we limit our case-study to rectangular shapes, the possible maps
possess only four lines forming a rectangle altogether.

Let’s assume a hypothetical robot trajectory {xi, yi}i=1...T .
We aim at estimating the map M, which means establishing
the probability density function p(M|x1..T , y1..T , z1...T ). A
first solution would consist in assessing, for each map in the
8-D domain, the correlation between the observations and the
predicted data based on the image source model. However,
such an approach would be far too cumbersome for a real-time
application. Instead, we rely on a beamforming map. Such a map
attributes, to every line parameters (r, θ), the likelihood of the
line existence given the observations with:

LT (r, θ) =

T∑
i=1

zi(|xi · cos θ + yi · sin θ − r|).

where di(r, θ) = |xi · cos θ + yi · sin θ − r| is the distance be-
tween the robot during time-step i and the hypothetical line being
considered. In the equation, all the correlation values add up
constructively along all the observations if an edge is indeed
present. Also, it can be noted that only first-order reflections are
taken into account, as we reason on individual lines. One may
consider that higher order reflections are less likely to account
for high correlation amplitudes because of wave scattering after
each additional reflection which causes loss of energy to the
wave packet. Finally, to retrieve the most plausible map, we
solve the following optimization problem:

M̂ = argmax
M

LT (M) = argmax
M

4∑
l=1

LT (rl, θl)

where M is restricted to be a rectangle. It can be solved
efficiently by taking that constraint into account. First, one can
determine the most likely line:

(r1, θ1) = argmax
r,θ

LT (r, θ).

Next, it is possible to rely on the assumption that the retrieved
line provides the most reliable estimation of the plate orientation
w.r.t. the robot. Therefore, the determination of the other lines
for l = 2, 3, 4 reduces to solving simple and independent one-
dimensional optimization problems:

θl = θ1 +
π(l − 1)

2
; rl = argmax

r
LT (r, θl).

D. Particle Evaluation and FastSLAM Algorithm

FastSLAM is a common approach to approximate Bayesian
filters in the context of a SLAM problem. It relies on a particle
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filter in the localization space, where each particle holds a hy-
pothesis on the map which is inferred from the particle trajectory
and the measurements. During time stepT , a set withN particles
has the following form:

PT =
{
X

(n)
T = {x(n)

i , y
(n)
i , α

(n)
i }i=1...T ,L(n)

T

}
n=1...N

where X
(n)
T represents the n-th particle belief on the robot

trajectory augmented with its heading over time steps i = 1. . .T ,
and L(n)

T its beamforming map which depends on the trajectory.
Moreover, each particle is provided with a weight indicating how
the particle belief accounts for the measurements. To define it,
we rely on the current correlation measurement and assess the
likelihoods of the map edges retrieved from L(n)

T and the current
robot position belief:

w
(n)
T = η · exp

⎧⎪⎨
⎪⎩
β

∑

(rl,θl)∈M(n)
T

zT

(
d
(n)
T (rl, θl)

)
⎫⎪⎬
⎪⎭

(4)

where η is the normalization factor andβ a positive parameter.
It enables to fix the confidence in the correlation measurements
and shall be tuned so that the resulting weight distribution is con-
sistent with the motion and observation noises. The weights are
used to sample, with replacement, the particles after each time
step. Besides, one may note that we are not considering, in (4),
the uncertainty on the lines retrieval from the beamforming maps
for simplicity. Altogether, the implementation of FastSLAM is
given in Algorithm 1.

IV. RESULTS

In this part, we test our FastSLAM approach on experimental
data. We detail the experimental setup and show the results in
terms of localization and mapping accuracy.

Fig. 3. Illustration of the echo detection principle based on correlation with
a propagation model. a) represents the acoustic measurement. b) shows the
correlation signal (blue) and its envelope (orange).

A. Experimental Setup

In order to assess the efficiency of our procedure, we use
an emitter-receiver pair of transducers on two different metal
plates. The first plate has dimensions 600 × 450 × 6mm, is
in aluminium, and has small artificial holes on it. The second
plate has dimensions 1700 × 1000 × 6 mm and is in steel.
The acoustic data for the plate 1 have been already presented
in [7] and will serve as a way to demonstrate the improvement
of the procedure. The acquisition process is globally the same to
collect the data on the second plate: the transducer pair is moved
by hand on the vertices of a regular grid. At every position,
10 measurements of the ultrasonic response are averaged to
improve the signal quality. This operation is not critical in a
laboratory environment, but it may be necessary in outdoor
conditions, where the inspection robot shall operate, to alleviate
the effect of external disturbances. The acquisition positions are
also carefully recorded. In total, 108 measurements are collected
on the plate 1, while this number increases to 117 for plate 2.
We use two tonebursts of a sinusoidal wave at 100 kHz as
the excitation. Moreover, the direct incident signal is smoothly
removed from the data as it does not correspond to a reflection
on an edge.

For each plate, we determine a wave propagation model
as in eq. (1) and use N = 20 particles. To simulate a sweep
of a plate by a robotic crawler, a sequence of measure-
ments is selected from the database and is presented to the
SLAM framework, with the theoretic displacement between
grid cells used as odometry. Also, we add Gaussian noise on
the odometry data: Δ̄r ∼ N (Δr, (10−2Δr +Δr0)

2) and Δ̄θ ∼
N (Δθ, (10−2Δθ +Δθ0)

2) with Δr0 = 10−3 m and Δθ0 =
10−2 rad to simulate odometry uncertainty which may be limited
due to the robot magnetic adherence and embedded accelerom-
eters used to provide precise heading on a nearly-vertical struc-
ture, in a realistic scenario [7].

B. Echo Detection

First, we illustrate the echo-detection principle. We show, in
Fig. 3.a), the measured acoustic signal for a position correspond-
ing to 8 cm to the edges, in a corner of plate 1. On b), we show
the resulting correlation signal computed using eq. (2) and its
envelope calculated with eq. (3), yielding the signal which is
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Fig. 4. Trajectories estimated by all the particles (black lines), dead-reckoning
trajectories (dash magenta lines) and map retrieved by the most likely particle
(green lines) during Steps 1, 22, 50 and 108 for a lawn-mower path on plate 1
(zoom for details). The true outline of the plate and true sensor positions
correspond to the blue rectangle and blue dot respectively.

fed to the FastSLAM algorithm. It can be seen on b) that we
manage to retrieve, from the local maxima, all the distances
where first-order reflections occurred which are 8, 37 and 52 cm.
The echo detected at nearly 45 cm corresponds to a higher-order
reflection, but still has an amplitude that is comparable to that of
the first-order wave packets. The existence of such a reflection
is not assumed by the algorithm. Hence, we will determine a
posteriori if their presence has a detrimental effect on the results.

C. Localization and Mapping Results

We run our FastSLAM algorithm using the data of plate 1, and
simulate a lawn-mower path. Although the results are generated
off-line, our method can run online on a real robotic platform.
Indeed, as the beamforming maps of size Z × Z are updated
incrementally, the complexity of one FastSLAM iteration with
N particles is O(N × Z2), which leads to a computational time
of a few tens of milliseconds per iteration in our setup, with
Z = 300 and N = 20.

In Fig. 4, we show the particles’ belief on the sensors trajectory
during measurement steps 1, 22, 50 and 108. We also represent
the map retrieved by the particle with the highest weight and sev-
eral dead-reckoning trajectories obtained using noisy odometry
input only. During Step 1, the map is not correctly estimated. As
only one measurement has been integrated, the distance to the
closest edge can be recovered but, the orientation is essentially
random. Rapidly, the three closer edges are recovered as shown
during Step 22. However, the right edge is not yet well estimated
as it is further away. During Step 50, the plate shape is fully
recovered, and during the final step, both the estimation of the
plate shape and trajectory are accurate. In contrast, the dead-
reckoning trajectories present noticeable drift. This illustrates
that, by relying on the acoustic data, the proposed approach can
appropriately compensate for moderate odometry noise.

Fig. 5 depicts the beamforming map for the most likely
particle during the final step. We can see that the intensity peaks
due to the edges are clearly visible, and our optimization method
does not face difficulty to retrieve them.

To compare our new FastSLAM approach with the previ-
ous one, we show, in Fig. 6, the average localization and line
parameters estimation errors calculated over 100 runs of each

Fig. 5. Beamforming map for the particle with the highest weight during the
final step. The rectangles indicate the edges retrieved with our method.

Fig. 6. Localization and mapping results over 100 repetitions of a lawn-mower
path on plate 1 for the previous and the new method. a) Average estimation errors
on the range parameter of the lines. b) Average estimation errors on the angle
parameter. c) Average localization errors in the estimated plate frame. The 10%
and 90% quantiles correspond to the upper and lower bounds of the coloured
areas. The scales along the y-axis are logarithmic.

algorithm, and using the same acoustic data on plate 1. We
simulated 100 repetitions of the lawn-mower path for the sensors
trajectory. In the figure, we represent the 10% and 90% quantiles
with the aim to measure the repeatability of each approach. It
can be observed that, with our new method, only a few tens
of measurement steps are necessary to recover, in average,
the range parameters of the lines with a precision of a few
millimeters, and the plate orientation with a precision better than
one degree. The localization result is also very precise as, after
a quick convergence, the position errors remain in the order of
a few millimeters despite the defects on the plate. Besides, the
estimation is not subject to randomness as the 10% and 90%
quantiles remain close to the average results. In comparison,
our previous method demonstrates poorer results. Indeed, not
only are the estimation errors higher, but also the variation
of precision can be relatively significant between two runs.
Altogether, the results illustrate the improvement of localization
and mapping that is achieved by our new method.

With the aim to assess the results for a larger plate, we
run our algorithm with the measurements obtained on plate 2,
and simulate again a lawn-mower path. The results obtained
over 100 runs are provided in Fig. 7. On this plate, the echo
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Fig. 7. Localization and mapping results over 100 repetitions of a lawn-mower
path on plate 2 for the new method. a) Average estimation errors on the range
parameter of the lines. b) Average estimation error on the angle parameter. c)
Average localization errors in the estimated plate frame. The 10% and 90%
quantiles correspond to the upper and lower bounds of the coloured areas. The
scales along the y-axis are logarithmic.

Fig. 8. Average estimation errors and standard deviations on the lines pa-
rameters obtained during the last measurement step for the two scenarios in
consideration. The errors are evaluated using 100 repetitions.

detection employed by our previous method is not efficient,
as it does not consider the wave dispersion effect, whereas the
propagation distances are larger. This induces large misdetection
rates and poor results. Hence, we display only the results of
our new approach. Despite the slower convergence caused by
the larger surface, and the slightly higher localization error, our
method still provides precise estimates of the trajectory and plate
geometry. This result indicates that our approach still works on
surfaces sufficiently large to be used for realistic applications.
The underlying prerequisites are a wave propagation model and
filter parameters that conveniently fit the acoustic measurements
and on-the-field noisy conditions. Naturally, one may also expect
longer convergence times when the plate surface increases, as
the echo detection is expected to be efficient mostly for short
ranges as shown in Fig. 7.a).

As a final evaluation, we determine the average mapping
errors and standard deviations over 100 runs obtained during
the final step for a lawn-mower path (Scenario 1) and a random
walk (Scenario 2) on plate 1. Fig. 8 presents the results. It can
be noticed that the overall results are relatively poorer for the
random walk. This illustrates that the estimation accuracy also
strongly depends on the robot path which shall be optimized for
optimal reconstruction.

V. CONCLUSION

We have designed a new FastSLAM approach to achieve
Simultaneous Localization and Mapping on metal plates
by relying on ultrasonic guided waves. Comparing to our
previous work, this method relies on wave propagation models

and beamforming maps. Experiments carried on an undamaged
and a damaged metal plate in a laboratory environment demon-
strate that this new approach achieves better results in terms of
accuracy and robustness with less algorithmic complexity. In
future works, this method shall be adapted and tested in more
realistic scenarios. Indeed, on a large metal structure in outdoor
environments, more complex and noisy signals are expected
due, for example, to inferior surface quality, to the presence of
anti-fouling coating on the plates, to more complex plate geome-
tries, or due to wave scattering caused by the welds which fix
the different plates altogether. Furthermore, adaptive techniques
shall be investigated to adjust the propagation model and filter
parameters which may no longer be assumed known a priori.
Also, a real robotic platform shall be used, and active-sensing
strategies shall be investigated to recover the plate geometry
efficiently.
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A B S T R A C T

The inspection of sizeable plate-based metal structures such as storage tanks or marine vessel hulls is a
significant stake in the industry, which necessitates reliable and time-efficient solutions. Although Lamb
waves have been identified as a promising solution for long-range non-destructive testing, and despite the
substantial progress made in autonomous navigation and environment sensing, a Lamb-wave-based robotic
system for extensive structure monitoring is still lacking. Following previous work on ultrasonic Simultaneous
Localization and Mapping (SLAM), we introduce a method to achieve plate geometry inference without prior
knowledge of the material propagation properties, which may be lacking during a practical inspection task
in challenging and outdoor environments. Our approach combines focalization to adjust the propagation
model parameters and beamforming to infer the plate boundaries location by relying directly on acoustic
measurements acquired along the mobile unit trajectory. For each candidate model, the focusing ability of
the corresponding beamformer is assessed over high-pass filtered beamforming maps to further improve the
robustness of the plate geometry estimates. We then recover the optimal space-domain beamformer through
a simulated annealing optimization process. We evaluate our method on three sets of experimental data
acquired in different conditions and show that accurate plate geometry inference can be achieved without any
prior propagation model. Finally, the results show that the optimal beamformer outperforms the beamformer
resulting from the predetermined propagation model in non-nominal acquisition conditions.

1. Introduction

During their lifetime, marine vessels are continuously deployed on
the seas for goods shipping. This inexorably leads to the deterioration of
the hull due, for example, to the formation of biofouling on the surface,
or due to the salinity of the water that can favor the formation of defects
such as cracks or corrosion patches. Other large metal structures such as
storage tanks deteriorate over time due to their operational conditions,
and the underpinning defects may not always be detectable with the
bare eye [1]. Thus, in the marine and petrochemical industries, the
inspection of large-scale metal structures – which are usually made of
metal panels assembled out together – must rely on efficient solutions
that can seamlessly integrate into their day-to-day operation.

Standard inspection methods are time-consuming as they often
require the intervention of trained operators, causing a significant fi-
nancial impact. Moreover, these methods work for localized inspection

✩ This work is part of the BugWright2 project. This project is supported by the European Commission under grant agreement 871260 - BugWright2.
∗ Corresponding author.
E-mail address: oouabi@georgiatech-metz.fr (O.-L. Ouabi).

areas; thus, the entire surface cannot be inspected in a reasonable
amount of time. For ship hulls inspection, for example, either human
operators or robots such as magnetic crawlers [2] can apply acoustic
probes on the structure surface to perform thickness measurements, and
detect corrosion patches. However, only the surface directly covered by
the probe is effectively controlled with a single measurement.

The inspection of structures over long ranges is being actively inves-
tigated in the literature. Lamb waves, in particular, are being integrated
into modern Non Destructive Testing (NDT)-capable devices. These
waves can be emitted in plate materials by piezoelectric transducers
and can propagate radially over long distances in a direction parallel
to the surface. What makes them appealing is that they are sensitive
to material integrity. Usually, they are deployed on static networks of
sensors that are permanently attached to the structure. Thus, defect
detection and localization can be achieved through the triangulation of
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acoustic scatterers from residual signals [3–7], or by using baseline-free
methods [8–11].

Besides, the interest in the development of a robotic system for long-
range inspection is steadily growing, as it holds tremendous potential
for industrial applications, and its feasibility is being demonstrated by
recent works [12–14]. Yet, deploying acoustic imaging techniques on
a robotic system necessitates precise localization of the transducers,
which is critical for accurate inspection results. Contrary to standard
Structural Health Monitoring (SHM) technology where the positions of
the sensors are known accurately, these positions need to be estimated
in the framework of a robotic application due to kinematics modeling
errors, and due to the imprecise wheel displacement and rotation data
provided by the wheels’ encoders.

When induced by a source excitation, Lamb waves can reflect on
the metal plate boundaries, usually without mode conversion when the
excitation frequency is sufficiently appropriate [15]. As the resulting
acoustic measurements contain such reflections, they provide range-
only information between the source position and the plate edges
which may be useful for accurate localization, in combination with
other measurement systems. Lamb wave-based localization has been
demonstrated for a pulse-echo setup on a rectangular and isotropic
metal panel, but with prior knowledge of the structure geometry [16].
Hence, determining precisely the sensor position on a large structure
is intrinsically connected to building a map of the environment (i.e
mapping the environment) which can rapidly become a tedious task if
not made automatically [17]. Furthermore, from a robotic perspective,
defect detection and localization may be interpreted as a mapping
problem as well. Overall, the mapping of acoustic scatterers (whether
they be plate boundaries or defects) by a mobile unit is a major issue
that needs to be addressed to enable the emergence of a viable robotic
inspection system.

In the literature, the problem of defect detection and localization
using acoustic reflections on the structure boundaries has been widely
studied [18–21]. Furthermore, approaches to detect the boundaries
of a rectangular panel [22], to identify structural features such as
stiffeners [23], or to localize an acoustic source [24,25] have been
investigated. Yet, they are deployed on static networks of sensors. A
recent work [26] proposes a Lamb wave-based approach to map a
rectangular metal panel using a pair of mobile sensors, along with an
exploration strategy. Yet, the work is dedicated to pitch–catch configu-
rations, the Time of Flights (ToF) readings are not done automatically,
the mapping is only based on the edge echo that arrives first, and the
final map may eventually be erroneous due to gridlock situations that
are not predictable.

Recent works from the authors address Lamb wave based Simultane-
ous Localization and Mapping (SLAM), where the geometry of the plate
and the position of a co-located emitter/receiver pair of piezoelectric
transducers are jointly estimated. A method based on 𝐿1-regularized
Least-squares for echo detection and on a FastSLAM algorithm [27]
has been presented in first instance [28]. Subsequently, propagation
models to account for the dispersive nature of guided waves in metal
plates and space domain Delay-And-Sum (DAS) beamforming [29] have
been integrated into a FastSLAM algorithm for the exclusive mapping
of rectangular shapes [30]. Results proved to be accurate on two
different metal panels. However, no solutions were proposed to limit
the detrimental effect of interference on the mapping results which is
a well-known issue inherent to DAS beamforming [29]. Besides, the
approach requires prior knowledge of the propagation model.

Prior knowledge of the physical properties of isotropic metal struc-
tures is in general sufficient for acoustic localization and mapping
in well controlled environments. However, the hypothesis that the
propagation model is known a priori may not be realistic for a practical
inspection task on a large metal structure due to a wide variety of
external perturbations that can significantly affect the acoustic signals,
and to a lack of knowledge of the structure physical condition (which
is the reason why it is being inspected). Potential perturbations may

include but may not be limited to temperature variations which are
already known to affect acoustic measurements substantially [31], pres-
sure due to the neighboring metal plates which are welded altogether,
moisture, the varying thickness of the coating, or the effect of the
coupling (namely water in the case of acoustic inspection with a robotic
system). Consequently, adaptive methods that automatically calibrate
the propagation model by relying directly on data acquired on the field
may be necessary to achieve accurate localization and mapping results,
without any human intervention.

Recent works in the literature either address the problem of extract-
ing the dispersion characteristics of materials from ultrasonic data [32–
35], or investigate acoustic localization techniques that can also recover
the propagation properties [25,36,37]. However, simultaneous acoustic
localization and propagation characterization from pulse-echo ultra-
sonic measurements acquired by a mobile unit has not been thoroughly
studied. In the literature of beamforming, adaptive methods have been
elaborated to compensate for inaccurate knowledge of the properties
of the propagation media for underwater acoustic source localization
purposes [38], or more generally, for Matched Field Processing [39].
Beamforming has been combined with focalization [40], an approach
that considers the propagation environment as an acoustic lens, and
which seeks, through an optimization process, to adjust the propagation
parameters so that the focalization capability of beamforming is maxi-
mized. It has also been studied for joint acoustic signal separation and
source localization [41]. The potential of focalization has been success-
fully demonstrated in simulation for underwater acoustic localization,
and may provide an interesting approach for Lamb waves. Yet, this has
not yet been demonstrated.

This paper proposes an approach that combines focalization and
DAS beamforming to achieve Lamb wave-based mapping of a plate-
like structure by a mobile unit, so that accurate mapping results can
be achieved during an inspection task without prior knowledge of the
propagation properties of the material. For the sake of simplicity, the
localization problem is not addressed here. The proposed approach
combines focalization to adjust the parameters of propagation models
that are derived from the Helmholtz equation, and beamforming to
localize the plate edges. The focalization capability of a candidate
beamformer is assessed over high-pass filtered beamforming maps, so
that the detrimental effects of interference and high-order reflections
are lowered. A simulated annealing optimization process is then imple-
mented so that the optimal beamformer can be recovered based directly
on data. Results acquired on experimental data in three different sce-
narios show that the proposed approach is effective. Furthermore,
mapping the plate geometry with the optimal beamformer is found
to be more efficient than mapping with a predetermined propagation
model in non-nominal acquisition conditions.

The outline of the present article is as follows. First, the general
theory on Lamb waves propagation in metal panels is briefly pre-
sented. Next, the approach based on DAS beamforming for mapping the
plate edges with a single mobile platform by leveraging the acoustic
reflections is recalled. The choice of the propagation parameters to
search for, namely, the plate thickness, the longitudinal and transverse
velocities, is then discussed, and the simulated annealing process is
presented. Finally, experimental results and discussions conclude the
article.

2. Lamb wave-based mapping

In what follows, we briefly recall the essential principles of the the-
ory on Lamb waves propagation in metal plates, namely, the Rayleigh–
Lamb equations. We then introduce a simple propagation model based
on approximate solutions of the Helmholtz equation to account for
dispersive propagation under the hypothesis of a linear model and an
isotropic material. Next, we summarize the mapping strategy to localize
the plate boundaries based on a known propagation model and a space-
domain delay-and-sum beamformer [30]. These elements will be the
basis of the core contribution of this paper, which is plate mapping
without prior knowledge of the propagation model.
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Fig. 1. Dispersion curves for several low order symmetric and anti-symmetric Lamb
wave modes in a 6 mm thick aluminum plate. The top figure depicts the group velocities
while the bottom plot shows the wavenumbers.

2.1. Lamb waves propagation in a metal plate

The theory on Lamb wave propagation in an isotropic and ho-
mogeneous wave guide is well established [42]. According to the
Rayleigh–Lamb equations:

tanh 𝑞ℎ
tanh 𝑝ℎ

= −
[

4𝑘2𝑞𝑝
(𝑘2 − 𝑞2)2

]𝛼

(1)

where ℎ denotes the half-thickness of the plate, 𝑘 = 2𝜋∕𝜆 is the
wavenumber, 𝜆 is the wavelength, and the following equations define
𝑝 and 𝑞:

𝑝2 = 𝜔2

𝑐2𝐿
− 𝑘2; 𝑞2 = 𝜔2

𝑐2𝑇
− 𝑘2.

In the above equation, 𝜔 is the pulsation, and 𝑐𝐿 and 𝑐𝑇 are respectively
the longitudinal and transverse velocities related to the material. For
𝛼 = 1, the equation yields the physical properties of symmetric modes,
whereas for 𝛼 = −1, the properties of anti-symmetric modes are
stipulated. The resolution of the equation, using dichotomy algorithms
for example [3], yields a dispersion relation 𝑘(𝜔 ⋅ 𝑑) (or 𝑘(𝜔) for a
fixed 𝑑), where 𝑑 = 2ℎ is the plate thickness. One particularity is that
each equation always admits at least one positive real-valued solution,
and the number of solutions increases with frequency. Hence, at least
the two fundamental modes A0 and S0 propagate within the material,
while higher-order modes propagate when the excitation frequency ex-
ceeds their respective cut-off frequency. Fig. 1 depicts dispersion curves
for symmetric and anti-symmetric modes for a 6 mm thick aluminum
plate. In practice, a low excitation frequency is used to avoid multi-
modal propagation, and one mode is often predominant over the other
fundamental mode. Also, as their velocities are frequency-dependent,
these modes are dispersive, resulting in wavepacket distortion and
spreading in the signal when the propagation distance increases.

Finite Element Methods (FEM) are often used to simulate Lamb
waves propagation [43], but their heavy computational load makes
them impractical to use for acoustic localization operations. Instead,
one can rely on computationally efficient and relatively accurate prop-
agation models given by the solutions of the Helmholtz equation, for
which the wavenumber abides by the dispersion relation of the mode

Fig. 2. Example of an acoustic signal acquired on an aluminum plate (top plot)
and the correlation signal obtained from the measurement along with its envelope
(bottom plot). The ranges relative to the first-order reflections (8, 37, 52 cm) can be
successfully retrieved from the local maxima. The echo at nearly 45 cm corresponds
to a higher-order reflection.

assumed to exist in the material. When a signal 𝑠 is used to excite Lamb
waves in a metal plate, under the hypotheses of linear propagation
and isotropic media, the vertical component 𝑢 of the displacement field
abides by:

∇2𝑢(𝑟, 𝜔) + 𝑘2(𝜔) ⋅ 𝑢(𝑟, 𝜔) = −𝑠(𝜔)

where 𝑟 is the propagation distance from the excitation point. It is
known that the solution, i.e. the acoustic transfer function 𝑔(𝑟, 𝜔), can
be expressed with the Hankel function of 0 order and of the first kind
yielding the scalar field: 𝑢(𝑟, 𝜔) = 𝑔(𝑟, 𝜔) ⋅ 𝑠(𝜔) = 𝐻1

0 (𝑘(𝜔)𝑟) ⋅ 𝑠(𝜔). The
transfer function is often simply reduced to:

𝑔̂(𝑟, 𝜔) ≈ exp(−𝑗𝑘(𝜔)𝑟)∕
√

𝑘(𝜔)𝑟. (2)

The use of this acoustic model is widespread in the literature of
guided waves, primarily to achieve defect detection and localization
purposes [44,45].

2.2. Space-domain beamforming for plate geometry inference with a single
mobile unit

We are considering a mobile platform equipped with an emit-
ter/receiver pair of piezoelectric transducers nearly co-located. At the
𝑖th scanning position, the emitter excites the Lamb waves in the plate
material with the pulse 𝑠(𝑡). Simultaneously, the receiver collects the
acoustic response 𝑧𝑖(𝑡) which contains the reflections on the plate
boundaries, and it will be assumed that the excitation signal is chosen
adequately so that the A0 mode is predominant (while the propaga-
tion of S0 is negligible). The objective is to infer the plate geometry
and the sensors’ acquisition positions in the plate frame. In robotics,
this is known as a mapping problem because the displacement be-
tween each acquisition position (i.e odometry data) is assumed to be
known flawlessly. Even though a solution for simultaneous localization
and mapping has been proposed [30], the localization problem is
disregarded in this paper for the sake of simplicity.

In the considered setup, the acoustic measurements essentially con-
sist of a superposition of the acoustic reflections. Under the assumption
that the material is homogeneous, isotropic and the propagation linear,
a standard measurement model to reverberation is the image source
model [46]. It states that each reflection from the plate boundaries can
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be considered as a signal originating from a fictional source, deducted
from the actual source position and reverberant media geometry. In
metal plates, the image source model can be leveraged to account for
first order as well as higher-order reflections, resulting in the following
measurements in the time domain:

𝑧𝑖(𝑡) =
∑

𝐱∈(𝐱𝑖)
𝑔(|𝐱 − 𝐱𝑖|, 𝑡) ∗ 𝑠(𝑡)

where 𝐱𝑖 = [𝑥𝑖, 𝑦𝑖] is the position of the robot during time step 𝑖, (𝐱𝑖)
the set of the image sources positions when the real source is in 𝐱𝑖,
𝑔(|𝐱 − 𝐱𝑖|, 𝑡) the acoustic transfer function associated to the predominant
A0 mode, and ∗ denotes the convolution operation. An example of a
clean acoustic measurement acquired on an aluminum plate can be seen
in Fig. 2, where the transducers have been placed on a 600 × 450 ×
6 mm aluminum plate, and at 8 cm of the two edges of a corner.

To retrieve the ranges from the sensors to the plate edges from data
𝑧𝑖(𝑡), we determine the correlation signal:

𝑧′𝑖(𝑟) =
⟨𝑧𝑖(𝑡), 𝑧̂(𝑟, 𝑡)⟩

√

⟨𝑧𝑖(𝑡), 𝑧𝑖(𝑡)⟩⟨𝑧̂(𝑟, 𝑡), 𝑧̂(𝑟, 𝑡)⟩

where 𝑧̂(𝑟, 𝑡) = 𝑔̂(2𝑟, 𝑡) ∗ 𝑠(𝑡) is the expected signal for the incident
wave reflecting at a distance 𝑟 from the transducers, and ⟨., .⟩ denotes
the scalar product in the domain of continuous signals: ⟨𝑢(𝑡), 𝑣(𝑡)⟩ =
∫ +∞
−∞ 𝑢(𝜏)𝑣(𝜏)𝑑𝜏. To alleviate the oscillations present in 𝑧′𝑖 , we retrieve

its envelope 𝑒𝑖(𝑟) with:

𝑒𝑖(𝑟) = |

|

𝑧′𝑖(𝑟) + 𝑗(𝑧′𝑖)(𝑟)||

where  denotes the Hilbert transform operator. Thus, the resulting
signal 𝑒𝑖 yields the distances of the transducers to the metal plate
edges with the position of its local maxima. This principle is illustrated
in the bottom plot of Fig. 2. Besides, it is noteworthy that a single
measurement cannot provide enough information to determine an edge
without ambiguity, as all the lines tangent to the circle with radius 𝑟
and centered at the position of the sensor may equally account for the
correlation measurement.

The plate geometry to be recovered is represented by a set of lines:
𝐌 =

{

𝑟𝑙 , 𝜃𝑙
}

𝑙=1...4 where the parameters (𝑟𝑙 , 𝜃𝑙) define the line equation
in the 2D plane with:

𝑥 ⋅ cos 𝜃𝑙 + 𝑦 ⋅ sin 𝜃𝑙 − 𝑟𝑙 = 0

in a non-mobile frame with respect to the plate, as illustrated in Fig. 3.
The origin 𝑂 of the reference frame can be taken as the initial position
of the mobile unit while on the metal panel. Moreover, for convenience,
the plate geometry is restricted to rectangular shapes.

Next, given a robot trajectory {𝑥𝑖, 𝑦𝑖}𝑖=1...𝑁 (assumed to be flawlessly
provided by odometry for the mapping problem), the beamforming map
𝑁 is computed to assess the likelihood of existence of any line (𝑟, 𝜃)
with:

𝑁 (𝑟, 𝜃) =
𝑁
∑

𝑖=1
𝑒𝑖(𝑑𝑖(𝑟, 𝜃)) (3)

where 𝑑𝑖(𝑟, 𝜃) = |𝑥𝑖 ⋅ cos 𝜃 + 𝑦𝑖 ⋅ sin 𝜃 − 𝑟| is the distance between the
robot during measurement step 𝑖 and the hypothetical line being
considered. In the equation, all the correlation values add up construc-
tively along with all the observations if an edge is indeed present.
Also, it can be noted that only first-order reflections are taken into
account, as we reason on individual lines. One major advantage of
this approach is that 𝑁 (𝑟, 𝜃) can be computed recursively when an
additional measurement 𝑒𝑁 is made available, as 𝑁 (𝑟, 𝜃) = 𝑁−1(𝑟, 𝜃)+
𝑒𝑁 (|𝑥𝑁 ⋅ cos 𝜃 + 𝑦𝑁 ⋅ sin 𝜃 − 𝑟|). This is beneficial for a robotic task
meant to be performed in real time, as a map estimate is available at
any time, and the computational load of one update is low. Finally, to
infer the most plausible plate geometry from 𝑁 , we solve the following
optimization problem:

𝐌̂ = argmax
𝐌

𝑁 (𝐌) = argmax
𝐌

4
∑

𝑙=1
𝑁 (𝑟𝑙 , 𝜃𝑙) (4)

Fig. 3. Representation of lines in a 2-dimensional plane with (𝑟, 𝜃) coordinates.

where 𝐌 is restricted to be a rectangle. It can be solved efficiently by
taking that constraint into account. First, one can determine the most
plausible line with:

(𝑟̂1, 𝜃̂1) = argmax
𝑟,𝜃

𝑁 (𝑟, 𝜃).

Next, assuming that 𝜃̂1 provides the most reliable estimation of the
plate orientation w.r.t. the robot, the determination of the other lines
reduces to solving independent and straightforward one-dimensional
optimization problems:

𝜃̂𝑙 = 𝜃̂1 +
𝜋(𝑙 − 1)

2
; 𝑟̂𝑙 = argmax

𝑟
𝑁 (𝑟, 𝜃̂𝑙)

for 𝑙 = 2, 3, 4. Solving the plate geometry inference with this approach
gives accurate results in laboratory conditions [30]. However, this
approach has some limitations. The fact that an infinity of lines can
equally account for one reflection causes interference, which is a well-
known issue encountered when relying on standard DAS beamforming.
The effect of interference is further exacerbated by the high order
reflections which are not considered in Eq. (3), whereas their pres-
ence cannot be neglected as shown by Fig. 2-(b). The consequence
is that beamforming maps are fuzzy, which can make the estimation
ambiguous, as it will be illustrated later. Also, the method relies on
prior knowledge of the propagation model 𝑔 to obtain accurate results,
whereas such a hypothesis may not be realistic for a practical inspection
task in challenging outdoor environments, where the structure state is
truly unknown.

3. Optimal beamforming for model learning

In this section, we present an adaptive method to recover a metal
plate geometry without the assumption of a known model. It is based
on focalization in the parameter space (i.e. the propagation model is ad-
justed) and beamforming for localizing the plate boundaries. First, the
parametrization of propagation models using solutions of the Helmholtz
equation is presented. Next, we introduce and apply a simple high-
pass filter to the beamforming maps to limit the detrimental effect of
interference and high-order reflections. A loss function is then designed
to assess the focusing capability of a candidate beamformer which
should maximize spatial coherency (i.e. the energy that is focused at
the geometry estimate on the beamforming map) in the case when
the propagation model is appropriate. Finally, an optimizer based on
simulated annealing [47] is presented to recover optimal propagation
parameters by minimizing the loss in a limited number of iterations.
The efficiency of such an approach has been successfully demonstrated
for underwater source localization purposes [40,41].
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3.1. Parametrization of the propagation model

With the hypothesis of linear and isotropic propagation, we aim
at recovering both a propagation model 𝑔̂(𝑟, 𝑡) and the plate geometry
expressed as a set of lines 𝐌̂ = {𝑟̂𝑙 , 𝜃̂𝑙}𝑙=1..4.

For candidate propagation models, we keep relying on the (ap-
proximate) solutions of the Helmholtz equation. Hence, estimating the
propagation model reduces to the estimation of only three parameters
which are the longitudinal velocity 𝑐𝐿, the transverse velocity 𝑐𝑇 and
the plate thickness 𝑑, and that we will gather in the variable 𝛺 =
{𝑐𝐿, 𝑐𝑇 , 𝑑}. This choice is convenient as we constrain the propagation
models to be physically plausible while limiting the search space for the
propagation model parameters to a low dimension, which will facilitate
the optimization process. As the complete state of the structure may
be unknown during the inspection, adapting these wave parameters
may be relevant. Indeed, plate thickness may not be known accurately
for each surface plate as the structural integrity is unknown. Besides,
the effects of variation of temperature, pressure, moisture may be
interpreted as variations of the effective velocities. For more complex
sources of disturbances such as the effect of coupling or structure
irregularities, we are not seeking to strictly compensate for their effect
with such a simple model, yet sufficiently enough to predict the plate
boundaries location accurately. Next, given candidate values 𝛺 for the
model parameters, the dispersion equation for the A0 mode given in
Eq. (1) is numerically solved and is used to infer the propagation model
𝑔̂𝛺(𝑟, 𝑡) with Eq. (2).

3.2. Design of the loss function

Compared to plate geometry reconstruction with a known propa-
gation model, inferring the plate geometry and propagation param-
eters simultaneously requires the determination of a larger number
of unknowns. Consequently, an appropriate loss function that ideally
prevents irregular cost surfaces with many local minima is needed to
facilitate the optimization process.

Here, we introduce a loss function to assess the ability of a candidate
beamformer (related to candidate parameter values 𝛺) to focus the
energy of the wave packets contained in the measurements at the plate
geometry estimate so that minimizing the loss function w.r.t. the model
parameter search space improves the spatial coherency achieved with
the beamformer. For candidate propagation parameters, the beamform-
ing map 𝛺(𝑟, 𝜃) is constructed as in Eq. (3), allowing a plate geometry
estimate 𝐌̂𝛺 to be retrieved from it with the same optimization process
as in Eq. (4). We then evaluate the total energy focused at the estimate
𝐌̂𝛺 over the beamforming map that has been high-pass filtered to limit
the effect of interference and high-order reflections. The filtered map
value at each line (𝑟, 𝜃) is simply defined by the difference between its
initial energy value and the minimum of energy in its vicinity that is
to be appropriately defined:

̃𝛺(𝑟, 𝜃) = 𝛺(𝑟, 𝜃) − min
(𝑟′ ,𝜃′)∈𝑉 (𝑟,𝜃)

𝛺(𝑟′, 𝜃′). (5)

where 𝑉 (𝑟, 𝜃) refers to the set of lines in the vicinity of (𝑟, 𝜃). Compared
to the standard 𝛺(𝑟, 𝜃), the filtered map ̃𝛺, while being inexpensive
to compute, has the advantage to present fewer areas where the in-
tensity is high but homogeneous (such a situation occurs due to the
combination of high-order reflections and interference). Hence, it is
more compatible with Eq. (4) for the determination of the location of
the edges. Thus, using Eq. (5) may appropriately filter ‘‘fuzzy’’ areas
where the energy is spread homogeneously (i.e. not focused at a single
point) due to interference on the beamforming maps, and may isolate
correct intensity peaks. This will be illustrated next with experimental
data.

To simultaneously recover propagation parameters and the plate
geometry, performing a joint search in both the propagation model
space and the geometry space would be computationally expansive.
Instead, we rely on an optimal beamforming formulation: the loss is

only evaluated over candidate model parameters 𝛺, and for the cor-
responding geometry estimate 𝐌̂𝛺 retrieved from the high-pass filtered
beamforming map ̃𝛺 with Eq. (4). The loss value 𝑙(𝛺) that we will
seek to minimize is then taken as minus the sum of the intensity levels
evaluated at the retrieved edges:

𝑙(𝛺) = −
∑

(𝑟,𝜃)∈𝐌̂𝛺

̃𝛺(𝑟, 𝜃) (6)

so that the energy focused at the plate geometry estimate can be
maximized, while the detrimental effects of interference and high-
order reflections can be minimized. The geometry estimate provided
by the optimal beamformer is expected to match closely the ground
truth geometry due to the maximum of spatial coherency as long as
measurements have been acquired on a sufficient portion of the plate
surface. Besides, to highlight the benefit of using high-pass filtered
beamforming maps, propagation model selection based on the loss
evaluated using the regular beamforming map 𝛺(𝑟, 𝜃) will also be
carried out in the following sections, and the mapping results will be
compared.

3.3. Optimization with simulated annealing

An optimization process is needed to adjust the wave propaga-
tion parameters (longitudinal and transverse velocities and the plate
thickness) through the minimization of the loss function. Due to the
implicit definition of the propagation models, first-order methods such
as gradient descent are impractical to use for our problem.

Simulated annealing [47] is efficient for estimating a global min-
imum of a cost function, even when the number of unknowns is
large [41]. This metaheuristic is inspired from metallurgy where, to
form a perfect crystal (which corresponds to the state of minimal
energy), a pure liquid substance is slowly cooled. At each iteration
of the optimization process, a random perturbation is applied to the
current point value. The perturbation is systematically accepted if
the energy is decreased. To escape local minima, the perturbation
is accepted according to a Boltzmann probability distribution if the
energy is increased. The temperature, which is a hyperparameter, is
decreased slightly after each iteration so that the probability to increase
the energy goes to zero. Hence, the major controllable parameters of
simulated annealing are the distribution of the perturbation and the
profile of the temperature cooling.

For Lamb-wave based mapping without a prior propagation model,
the parameter search is reduced to the optimization over the value
of 𝛺 as the geometry is directly deduced using Eq. (4) when 𝛺 is
fixed. Our implementation of the optimizer is similar to that used
in articles related to the underwater localization problem [40]. The
major difference lies in the cost function design. First, we initialize the
propagation parameters with uniform distributions within predefined
intervals which are plausible regarding the application:

𝑐0𝐿 ∼  ([𝑐min, 𝑐max]); 𝑐0𝑇 ∼  ([𝑐min, 𝑐0𝐿 − 𝑚])
𝑑0 ∼  ([𝑑min, 𝑑max]).

The value of 𝑐𝑇 is drawn below the value of 𝑐𝐿, with a small margin
𝑚 > 0, as it cannot physically be higher (i.e there are no positive
real-valued solutions to the Rayleigh–Lamb equation).

At each iteration of the algorithm, the parameters are randomly
disturbed using the following perturbations:

𝑐𝑡+1𝐿 = min
{

max{𝑐𝑡𝐿 + 𝛥𝑐 ⋅ 𝜒3
0 , 𝑐min}, 𝑐max

}

𝑐𝑡+1𝑇 = min
{

max{𝑐𝑡𝑇 + 𝛥𝑐 ⋅ 𝜒3
1 , 𝑐min}, 𝑐𝑡+1𝐿 − 𝑚

}

𝑑𝑡+1 = min
{

max{𝑑𝑡 + 𝛥𝑑 ⋅ 𝜒3
2 , 𝑑min}, 𝑑max

}

.

Using the min–max formulation enables to leverage prior information
by constraining the parameter values within plausible intervals. Simi-
larly to the initialization step, 𝑐𝑡+1𝑇 is restricted to be lower than 𝑐𝑡+1𝐿
with the same margin 𝑚. 𝜒0, 𝜒1, 𝜒2 are independent random values
between −1 and 1, and are drawn from uniform distributions: 𝜒1,2,3 ∼
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 ([−1, 1]). They are raised to power 3 so that small variations are more
likely. Still, large variations can be possible to explore regions of the
search space that are far occasionally when the values of 𝛥𝑐 and 𝛥𝑑 are
chosen to be large enough.

Next, for the new parameter values 𝛺𝑡+1, the dispersion relation
𝑘𝛺𝑡+1 (𝜔) is determined by solving the Rayleigh–Lamb equations. As the
relation is computed numerically at each iteration of the optimization
process, the computational load can be quite demanding. A trick to
save computational time is to determine the wavenumber only for a re-
stricted set of pulsation values 𝜔1,… , 𝜔𝐾 and to use linear interpolation
to determine the wavenumber for other frequencies.

Next, the acoustic transfer function 𝑔̂𝛺𝑡+1 (𝑟, 𝜔) is determined with
the Helmholtz model given in Eq. (2). The beamforming map 𝛺𝑡+1 (𝑟, 𝜃)
is then computed and a plate geometry estimate 𝐌̂𝛺𝑡+1 is retrieved from
it, allowing the determination of the loss value 𝑙(𝛺𝑡+1) with Eq. (6).

The variation of energy between the previous and disturbed param-
eters is 𝛥𝐸 = 𝑙(𝛺𝑡+1) − 𝑙(𝛺𝑡). In the context of simulated annealing, the
disturbed parameter value is not systematically kept. It is the case only
when:

𝜒 < exp
{

−𝛥𝐸
𝛾𝑇

}

where 𝛾 is a strictly positive scaling parameter, 𝑇 is the temperature
at the iteration 𝑡, and 𝜒 is drawn randomly and uniformly between
0 and 1. Consequently, when the energy is decreased, the disturbed
parameters are systematically kept. Otherwise, the acceptance rate is
given by the Boltzmann distribution which yields lower acceptance
rates for more significant increases of energy. The temperature param-
eter is often chosen to decrease inverse logarithmically. To enable fast
convergence of simulated annealing, we will decrease the temperature
inverse linearly. Trials and errors are used to determine appropriate
parameters for the optimizer: the values that empirically demonstrate
a lower likelihood for the optimizer to be stuck in local maxima while
maintaining a sufficient convergence speed are retained.

As it has already been highlighted, the cost function may be heavy
to assess, in particular when the number of considered measurements
is high. Indeed, each iteration of the optimizer requires solving the
Rayleigh–Lamb equation for a set of frequency values, then computing
the beamforming map using the 𝑁 measurements, and recovering a
plate geometry estimate with the optimization. For a robotic appli-
cation, a few seconds might be needed to achieve convergence with
around 100 measurements and using a linear decrease of the tempera-
ture. Thus, our method cannot be used in real time. Yet, this is not an
issue, as it could be considered, during a practical robotic inspection
task, to stop the robot for a few seconds to run the optimizer occasion-
ally, and restrict the maximum number of acoustic measurements used
to perform the optimization.

4. Experimental setup

We test our approach on experimental acoustic data that have
been acquired in three different scenarios. To generate the datasets,
an emitter/receiver pair of contact piezoelectric V103-RM U8403008
transducers is moved at different positions on the plate surface, in
each scenario. These transducers are used because, at the time of
the experiment, it was the best solution available to the authors to
generate and receive Lamb waves, although it may not be optimal.
During the acquisition, the transducers are placed one beside the other
to approximate a pulse-echo setup. The excitation signal used to emit
the waves in the material corresponds to two tone bursts of a sinusoidal
wave at 100 kHz, with an amplitude of 100 V peak to peak. This
frequency is chosen as it has been experimentally observed that the
predominant propagation mode was A0 for all the scenarios, and the
others modes are almost nonexistent. It is to be noted that, in our
experiments, two different transducers are used, whereas our method
is based on a point-like and co-located emitter–receiver assumption

Fig. 4. Pictures showing the experimental setups for Scenario 1 (left) and Scenario 3
(right).

that we assimilate to the center between the transducers. This is not
a significant problem as the diameter of the transducers (1.7 cm), and
thus the distance between their centers is not large compared to the
wavelength (2 cm) for the considered excitation frequency. Thus, the
difference induced by this setup has negligible impact on the signals.

Different operations are performed next on the measurements. For
Scenario 1 and 2 only, 10 scans are acquired per acquisition position
and are averaged to improve the signal-to-noise ratio. This operation
is performed although it is not critical in a laboratory environment. In
addition, the high frequencies (>400 kHz) of the signals are filtered
out. Also, the equivalent of twice the excitation duration is smoothly
removed at the beginning of each measurement with a sigmoid win-
dow. Indeed, it is not desirable to keep the first wave packet resulting
from the direct transmission of the excitation between the emitter
and the receiver, as it does not correspond to a reflection on a plate
boundary. The counterpart is that transducers cannot be brought closer
to an edge than the dead-zone distance (which amounts here to 2 to 4
wavelengths), otherwise, the first reflection on it would be removed as
well.

For Scenario 1, the transducers are moved by hand on an aluminum
plate of size 600 × 450 ×6 mm that contains artificial holes of different
thicknesses and depths as shown in Fig. 4. In total, 𝑁1 = 108 mea-
surements are acquired, each of them containing 𝑀1 = 500 samples
collected at a sampling rate of 1.25 MHz. The signals are acquired
with a National Instruments USB 6356 data acquisition device. For
Scenario 2, the data is collected with an oscilloscope on a steel plate of
dimensions 1700 × 1000 × 6 mm. With these data, we can test our
approach on a different material and show that it is still applicable
to a larger surface. A total of 𝑁2 = 117 measurements are collected
with a sampling frequency of 6 MHz. The total number of samples per
measurement is 𝑀2 = 5000. For Scenarios 1 and 2, the transducers
are in contact with the surface during the acquisition. Coupling gel is
placed at their interface to ensure a good coupling. For Scenario 3, the
data are acquired on the same plate as the one used for Scenario 1.
However, a thin layer of water of approximately 1 mm of thickness
is put all over the plate surface, and the transducers are not placed
in contact with the plate surface during the acquisition, but are kept
in contact with the water only. The acquisitions are performed using
a customer-design five axes immersion scanner made by Inspection
Technology Europe BV. It is also used to place the transducers (that
are kept one beside the other) at specific positions on the measurement
grid while maintaining a constant distance between the plate surface
and the transducers. Due to the plastic holder, the distance between the
centers of the transducers rises to 2.5 cm which is not an issue, as the
distance is not large comparing to the wavelength. For this scenario, a
total of 𝑁3 = 108 measurements are collected at the same positions than
those used for Scenario 1, the sampling frequency is 1.25 MHz, and the
number of samples per measurement is 𝑀3 = 500. The data acquired
in this setup are expected to be representative of those that would
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Fig. 5. Acquisition positions on the aluminum plate for Scenarios 1 and 3 (left), and on the steel plate for Scenario 2 (right).

Fig. 6. Mapping results based on the standard DAS beamforming with a predetermined propagation model at different steps of a simulated lawn-mower trajectory in Scenario
1. Measurements steps 1, 35 and 108 correspond to figures (a), (c) and (e) respectively where the geometry estimate is represented by the straight lines. The corresponding
beamforming maps are given in figures (b), (d) and (f) along with the retrieved edges indicated by the rectangles.

be acquired on a real structure by the robotic system, where water
may also be used as coupling, and where the transducers may not be
directly in contact with the structure surface to avoid damaging them
by surface irregularities. Furthermore, this scenario will also allow
us to highlight the potential of our approach in a slightly ‘‘disturbed
scenario’’ comparing to the nominal acquisition conditions of Scenarios
1 and 2. Pictures of the experimental setups are available in Fig. 4, and
all the acquisition positions are provided in Fig. 5.

In the next, we do not assume any imprecision on the sensor dis-
placements. Indeed, Simultaneous Localization and Mapping has been
studied elsewhere [28,30], and the method presented here is expected
to integrate these frameworks conveniently.

5. Results

This section illustrates the efficiency of our approach for mapping
a rectangular metal panel using ultrasonic guided waves in the three
aforementioned scenarios. The benefit of filtering the beamforming
maps is first discussed and highlighted based on the experimental
data. Next, the correlation between the designed loss function and the
reconstruction error is numerically assessed. The optimizer designed
in the previous section is run to simultaneously infer the plate ge-
ometry and recover the propagation model. The resulting precision
is compared with that obtained using a predetermined propagation
model that will be used as a baseline. The overall results demonstrate

that this target objective is successfully achieved with our method in
nominal acquisition conditions (Scenarios 1 and 2). Our approach is
also tested in slightly disturbed conditions (Scenario 3) to illustrate
that it remains efficient. The results are obtained using the full batch
of measurements in each scenario, which would amount to having
the robot covering an important portion of the plate surface before
calibrating the propagation model. As this may not be a representative
scenario, the efficiency of our procedure is also assessed with simulated
robot paths with acquisition points that are more sparse, and with a
varying number of measurements available during the calibration.

5.1. Mapping with a predetermined propagation model

In Fig. 6, we show the mapping results for a lawn-mower trajectory
simulated with the data from Scenario 1, and during measurement
steps 1, 35 and 108. The geometry estimates are determined at each
measurement step from the standard beamforming maps derived with
Eq. (3), and based on a predetermined propagation model which is
built using Eq. (2) and predetermined model parameters (𝑑 = 6 mm,
𝑐𝐿 = 6420 m∕s and 𝑐𝑇 = 3040 m∕s for our aluminum plate which were
validated by comparing the theoretical and experimental dispersion
curves). It can be observed that, initially, only the range to the closest
edge is retrieved, but the orientation estimate is essentially random
as only a single measurement has been integrated. During Step 35,
three plate edges are correctly recovered but it is not the case of the



Ultrasonics 123 (2022) 106705

8

O.-L. Ouabi et al.

Fig. 7. Different beamforming maps computed using the data from Scenario 2 and the retrieved edges. (a) shows the standard beamforming map, which yields correct estimates.
(b) depicts the map obtained with the same data sub-sampled in time. One edge is not correctly estimated. (c) shows the high-pass filtered beamforming map obtained from the
sub-sampled data. The correct plate geometry is recovered, while the fuzzy areas due to interference and higher-order reflections have been partially filtered out.

right boundary as it is further away. Eventually, the geometry is fully
recovered during Step 108, when all the available measurements have
been integrated. The final average reconstruction error is less than
one degree for the orientation, and the average estimation error is
0.15 cm for the lines range parameters. Overall, these results illustrate
the efficiency of space-domain delay-and-sum beamforming combined
with our grid search method for mapping the plate geometry with
a propagation model based on prior knowledge of the mechanical
properties of the material. This method is efficient despite the artificial
holes that are present in the plate.

We now perform the experiment using all the measurements ac-
quired on the larger steel plate (Scenario 2). This time, the parameters
for the propagation model are 𝑑 = 6 mm, 𝑐𝐿 = 5880 m∕s and 𝑐𝑇 =
3250 m∕s. The beamforming map shown in Fig. 7-(a) depicts two visible
intensity peaks. The two other peaks are much less visible due to their
lower intensity, and can be easily mistaken with interference and high-
order reflections which cause areas of homogeneous intensity. Although
the estimation is correct in this case (the average range error for the line
estimation is approximately 0.5 cm), it may not be robust. To illustrate
this, we sub-sample in time the data by a rate of 4 and reconstruct the
beamforming map using the same propagation model. The results can
be seen in Fig. 7-(b). The beamforming map is very similar. However,
all but one line are still correctly recovered, causing the average error
on the estimation of the line ranges to rise to 17 cm as the ambiguity
is too important. Using high-pass filtered beamforming maps may
increase the robustness of the estimate as described earlier. Such a
map is shown Fig. 7-(c) where 𝑉 (𝑟, 𝜃) is chosen as the rectangular area
centered at (𝑟, 𝜃) with a size 6.5 cm × 24◦. This window is sufficiently
large to encompass the intensity peaks on the beamforming map, and
sufficiently limited to make the filtering effective. When relying on the
filtered version of the beamforming map, the estimation is made correct
(the range error is again 0.5 cm), even though we cannot completely
alleviate the effect of interference and higher-order reflections. Hence,
the filtering may provide additional robustness which is to be leveraged
to calibrate the propagation model. It may be even more useful in the
presence of disturbances during the acquisition, as will be illustrated in
the following.

5.2. Correlation between the loss and the geometry estimation error

We assess whether the designed loss is sufficiently correlated with
the reconstruction error to ensure that its minimization yields an accu-
rate plate geometry estimation. We create a family of 40 propagation
models based on the approximate solutions to the Helmholtz equation
Eq. (2) with values of 𝛺 = {𝑐𝑇 , 𝑐𝐿, 𝑑} uniformly distributed within
the intervals 𝑐𝑇 , 𝑐𝐿 ∈ [2500 m/s, 6500 m/s] and 𝑑 ∈ [3 mm, 7 mm].
Then, we determine the filtered beamforming map using each model
to obtain a plate geometry estimate in each of the three scenarios
under consideration. The results are displayed in Fig. 8 as plots of
the reconstruction error (both in range and orientation) w.r.t. the loss

value. We also display the same plots using the geometry estimates and
loss values obtained without the filtering, for comparison. Ideally, we
would obtain reconstruction errors that would monotonically decrease
with the loss value.

For both Scenarios 1 and 2 in Fig. 8-(a)–(d), we observe that
the range errors globally diminish for lower loss values. It can also
be observed that models with close loss values can yield completely
different reconstruction errors, or that models with high loss values can
provide an accurate estimate (e.g the plot of the range error in Fig. 8-
(c)). Yet, these tendencies are not critical, as the major requirement
for our approach to be effective is that the best estimation results are
achieved for the lower losses as this is what will be minimized. The
variations of the orientation error present a different aspect. There is
no strict decrease in the error for lower losses. Also, the discretization of
the orientation value is visible due to the resolution of the beamforming
map that is limited for the sake of computational efficiency. Yet, it
is still possible to achieve an accuracy in the order of one degree,
which is sufficient for our application. Also, the limited resolution is
not a significant problem for propagation model learning, as the best
accuracies are also achieved for the lower loss values.

We notice a slightly more divergent behavior for the two losses
in Scenario 3, which corresponds to our slightly disturbed scenario.
Regarding Fig. 8-(f) where the beamforming maps are not filtered, the
reconstruction error presents a tendency to decrease for lower loss
values. However, the minimum reconstruction error is achieved for
a loss value of approximately 𝑙(𝛺min) = −86, and it becomes higher
for lower losses. This is not the desired behavior, as it would result
in poorer estimation results if the loss minimization is effective. This
tendency is not visible when the loss values and the geometry estimates
are obtained from the high-pass filtered beamforming maps (Fig. 8-
e), where the lowest reconstruction errors are globally obtained for
the lower losses. Hence, these results support the benefit of high-pass
filtering the DAS beamforming maps for mapping and propagation
model adaptation. It provides additional robustness due to its ability to
lower the detrimental effect of high-order reflection and interference.

5.3. Model learning and plate mapping in nominal acquisition conditions

To assess the performance of our approach for optimal beamforming
for Lamb wave-based mapping, we run it 10 times for Scenario 1 and 2,
with random initial parameter values for each repetition. The simulated
annealing is set with the following parameters: 𝛥𝑐 = 7000 m/s, 𝛥𝑑 =
2 cm, 𝑐min = 1500 m/s, 𝑐max = 8000 m/s, 𝑚 = 500 m/s, 𝛾 = 1,
𝑇 = 𝑇0∕𝑡 where 𝑇0 = 200, 𝑑min = 3 mm and 𝑑max = 1 cm.
Besides, the performance of our approach is compared with the results
achieved when using predetermined propagation models based on prior
knowledge of the plate thickness, the longitudinal and transversal
velocities in nominal conditions. These predetermined models will
serve as a baseline for comparison. Fig. 9 depicts the evolution of
the minimum loss value and the corresponding reconstruction errors
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Fig. 8. 2D plots showing the correlation and loss values achieved using each of the propagation models from the predefined model set, and for the three scenarios. On the left,
the loss value and geometry estimates are determined from the high-pass filtered beamforming maps. On the right, they are determined from the standard maps without filtering.

achieved during the optimization process. The upper and lower bounds
of the filled areas represent the minimum and maximum values over
the 10 runs, at each iteration step, while the solid blue lines account
for the mean values. For comparison, the loss values and reconstruction
errors achieved when using the predetermined propagation models for
the two scenarios are also displayed.

In both scenarios, the achieved minimum loss decreases monoton-
ically until it reaches a plateau. The final loss value is always lower
than the loss value achieved with the predetermined model in Scenario
1 and significantly lower in Scenario 2. In terms of reconstruction error,
the final average range error is comparable to that achieved with the
predetermined model, which is 3 mm for Scenario 1. It is slightly
above the estimation error value obtained with the predetermined
model (0.5 cm) for Scenario 2. Besides, the orientation errors rapidly

decrease to zero for all the runs, achieving the same precision as the
predetermined models in the two scenarios.

Altogether, these experiments demonstrate that a propagation
model can be efficiently recovered to estimate a plate geometry through
optimal beamforming by relying directly on data, regardless of the plate
size and material, and as long as the measurements have been acquired
on a sufficient portion of the surface.

5.4. Model learning and plate mapping in non-nominal acquisition condi-
tions

We perform the same experiments using the data from Scenario 3
which have been acquired in slightly disturbed conditions due to the
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Fig. 9. Evolution of the loss value and reconstruction errors for 10 repetitions of the optimization process with simulated annealing, and using the data from Scenario 1 (a)
and Scenario 2 (b). The solid lines represent the mean values. The upper and lower bounds of the filled areas represent the minimum and maximum values respectively during
each iteration. For comparison, the values achieved with the predetermined propagation model for each scenario are displayed as horizontal lines. The scale along the 𝑦-axis is
logarithmic for the range error plots only.

Fig. 10. Evolution of the loss value and reconstruction errors for 10 repetitions of the
optimization process and using the data from Scenario 3. The blue lines represent the
mean values. The upper and lower bounds of the colored areas represent the minimum
and maximum values respectively during each iteration. For comparison, the values
achieved with the predetermined propagation model are displayed as horizontal red
lines. The scale along the 𝑦-axis is logarithmic for the range error plot only.

layer of water that is placed at the interface between the transducers
and the plate surface. The evolution of the loss and the reconstruction
errors for 10 repetitions of the optimization process with random initial
parameter values is shown in Fig. 10. It can be observed that the
loss rapidly decreases to a value lower than that achieved with the
predetermined model. Regarding the reconstruction error, the average
range error, after convergence, reaches 1 cm while the error is 2 cm
when using the predetermined model for the geometry reconstruction.
Furthermore, the orientation error rapidly decreases to a value lower
than one degree.

Altogether, our approach, which automatically calibrates the prop-
agation model based on data, yields better geometry estimates in this
disturbed scenario compared to mapping with the predetermined prop-
agation model, as illustrated by Fig. 10. These results are promising as
the propagation in the thin layer of water has not been modeled explic-
itly. This further shows the potential of our approach which adapts the
propagation model to achieve accurate plate reconstruction in varying
conditions, as it is expected to happen for a robotic inspection task
on large structures in challenging outdoor environments. Also, with
our approach, there is potentially no need to take into account slight
sources of disturbance explicitly in the propagation models.

5.5. Non uniqueness of the optimal model parameters

Although we have shown that a propagation model can be recovered
based on data to achieve precise localization by adapting the model
parameters, our method cannot recover the real values of the phys-
ical model parameters. Indeed, different model parameters can yield
equivalent loss values as depicted by Fig. 11, where we represent the
variation of the loss w.r.t. the two velocity parameters for a fixed
thickness (d = 6 mm), and using the data acquired on the two metal
plates considered in this study (Scenario 1 and 2). The more specific
explanation is that different model parameters may lead to similar
dispersion values in the considered frequency bandwidth, after resolv-
ing the Rayleigh–Lamb equations. Yet, the fact that the actual model
parameters cannot be recovered with our method is not a significant
issue, as our primary objective is to achieve accurate mapping of the
plate structure with a calibrated model 𝑔, so that the wavepackets
inside the measurements can be appropriately accounted for.

5.6. Evaluation of our approach with sparse measurements

During a real robotic inspection task, the acoustic measurements
may not have been acquired over a dense grid, and over a sufficient
portion of the surface during the calibration operation to fully recover
the plate geometry. To evaluate the performance of our approach in
more realistic scenarios, we assess how the quantity of measurements
available during the optimization process affects the propagation model
selection when the data are acquired along more realistic trajectories.
To avoid running the optimizer every time, we consider the previous
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Fig. 11. Loss value computed on the high-pass filtered beamforming maps with respect to the longitudinal and transverse velocities. The data from Scenario 1 are used for the
plot on the left, while the data from Scenario 2 are used for the plot on the right.

Fig. 12. Simulated robot paths used for the experiments on the steel plate (left) and
the aluminum plate (right). The path lengths (i.e the number of acquisition positions)
are respectively 36 and 26.

family of 40 propagation models. We evaluate, for each propagation
model, the reconstruction errors obtained with and without filtering
the beamforming maps, and select the error relative to the propagation
model, for every set of measurements, that yields the lowest loss
value. We also assess the estimation errors when the predetermined
propagation model is used along with high-pass filtered beamforming
maps, for comparison. We design two different trajectories (one for
each plate) that are provided in Fig. 12. The results, which are shown in
Fig. 13, were obtained using the data acquired on the large steel plate
(Scenario 2) and using the data acquired in the disturbed conditions
(Scenario 3).

When only a few measurements are available, the average range
errors are relatively high in all the cases, because the sensors need to
pass by a border closely enough to detect it. The most accurate results
are achieved when all the measurements are taken into account. In the
middle, we can see, in Fig. 13-(a), that the minimum range error is
reached faster when the beamforming maps have been filtered, and this
minimum error is lower than the error achieved with the predetermined
model. Furthermore, both in Fig. 13-(a) and (b), the reconstruction
errors are seemingly lower when relying on model calibration for the
reconstruction. Overall, the results show that our approach is effective
for mapping, and yields similar – if not better – performance than
that obtained with a predetermined propagation model, even when the
measurements have been sparsely acquired by the mobile unit.

6. Discussions

The method presented here restricts the propagation models to be
approximate solutions of the Helmholtz equation with dispersion rela-
tions derived from the Rayleigh–Lamb equation. This approach is not
sufficient for recovering the actual model parameters, and addressing
this in future work would be desirable for a complete NDT method
(the knowledge of plate thickness variation would be of particular
importance). Yet, the recovered propagation model 𝑔̂ is sufficient to

achieve accurate mapping results through beamforming. Whether this
approach remains appropriate in more realistic conditions (i.e on a real
ship hull for example) is still subject to investigation. It is expected that
this parametrization would be sufficient as long as the first-order wave-
packets are sufficiently energetic within the measurements, and that
the major hypotheses on the propagation model (linear propagation,
homogeneous and isotropic material) approximately hold. Due to the
large size of the plates on a real structure and the low reflectivity of
weld joints, the signal-to-noise ratio (SNR) is expected to be low. Hence,
a study evaluating the performance of our approach for various SNR
conditions is needed to assess how likely it would work in practice.
Also, it is to be noted that, in the present study, the sensor posi-
tions were measured accurately, whereas in practice, only estimated
positions will be available.

The case of multi-modal propagation is not considered here,
whereas it is likely if the frequency is not sufficiently adequate to
the material in a -presumably- unknown state, or if mode conversion
occurs. Having at least A0 and S0 modes propagating simultaneously
is the most frequent scenario. It is believed that the algorithm could
be extended by considering several hypotheses (bi-modal, A0-only,
S0-only propagation, mode conversion for different paths, see [4]) to
determine which one is most likely based on data. However, integrating
more complex interactions such as diffraction due, for example, to
complex structural features such as stiffeners, holes... would be more
challenging. We expect isotropic propagation to be prevalent, as these
complex wave interactions may be scarce and have a sufficiently small
incidence on the signals to not affect the mapping results.

Besides, our method, as presented here, is restricted to rectangular
geometries, as it facilitates edge retrieval from the beamforming map.
This constraint is not a limitation for mapping storage tanks or ship
hulls, as they are almost entirely made of rectangular panels. Yet, our
approach could be extended in future work to make it applicable to
structures with more general geometries. One may also want to adapt
our approach to more conventional applications in SHM where, for
example, the propagation model could be automatically calibrated by
maximizing the energy focused at the estimated defect location on
the imaging results, or by relying on the reflections on the sample
boundaries.

7. Conclusion

In this paper, we introduce a method to accurately recover the ge-
ometry of a metal plate by relying on ultrasonic measurements acquired
by a mobile unit, in pulse-echo, and without using a predetermined
propagation model. Our approach is based on focalization in the model
parameter space and beamforming for localization of the plate bound-
aries. We restrict the propagation model to be an approximate solution
of the Helmholtz equation and parametrize it with only three physical
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Fig. 13. Reconstruction errors w.r.t. the number of measurements considered in the loss, and using the data from Scenario 2 (a) or from Scenario 3 (b). The measurements are
integrated one after the other in the loss, following the simulated paths. The error is only evaluated for the model yielding the lower loss value for the two cases (model selection
with and without filtering the beamforming maps). For comparison, the errors achieved with the predetermined models are also displayed.

values. We introduce a loss function assessed on high-pass filtered
beamforming maps to quantify the focusing ability of a candidate
beamformer (i.e., candidate model parameters). Eventually, we find
optimal model parameters with a simulated annealing optimization
process.

We demonstrate the performance of our method on three sets of
experimental acoustic data acquired on a dense grid on two metal
plates of different sizes and different materials. The results illustrate
the relevance of filtering the beamforming maps to reduce the im-
pact of interference and high-order reflections. We also show that
a propagation model enabling accurate boundary localization can be
recovered with simulated annealing. For the two undisturbed scenarios,
the precision of the localization is found to be similar to that achieved
with the model built from prior knowledge on the plate material,
but it is found to be superior in non-nominal acquisition conditions.
This highlights the very potential of our method for Lamb wave-based
localization and mapping on a large metal structure, where the wave
propagation conditions may not be known a priori. The benefit of
this approach is real for practical industrial inspection tasks, where
the propagation models could be automatically calibrated. Eventually,
we assess the performance of our approach using reduced numbers of
measurements acquired on the two plates, and following more realistic
robot trajectories. The results illustrate that the proposed approach can
recover the plate geometry accurately even with sparse measurements,
and outperforms the mapping based on the predetermined propagation
model.

In future work, the method shall be integrated within a simulta-
neous localization and mapping framework, as the sensor positions
need to be estimated as well. Also, the hypothesis of rectangular plate
geometries shall be relaxed, and more complex wave phenomena such
as anisotropic and/or multi-modal propagation, diffraction, or mode
conversion are to be integrated in the model. The recovery of the real
physical parameters, such as plate thickness, and the mapping of defects
shall be investigated to make possible a complete robotic NDT task.
Finally, the method shall be tested in more realistic conditions, with a
real robotic platform such as a magnetic crawler to acquire the signals.
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On-plate localization and mapping for an inspection robot using
ultrasonic guided waves: a proof of concept

Cédric Pradalier1, Othmane-Latif Ouabi1, Pascal Pomarede1 and Jan Steckel2

Abstract— This paper presents a proof-of-concept for a local-
ization and mapping system for magnetic crawlers performing
inspection tasks on structures made of large metal plates. By
relying on ultrasonic guided waves reflected from the plate
edges, we show that it is possible to recover the plate geometry
and robot trajectory to a precision comparable to the signal
wavelength. The approach is tested using real acoustic signals
acquired on metal plates using lawn-mower paths and random-
walks. To the contrary of related works, this paper focuses on
the practical details of the localization and mapping algorithm.

I. INTRODUCTION

This paper aims at demonstrating the interest of using ul-
trasonic guided waves to support inspection robots operating
on structures made of metal plates. Such structures include,
in particular, ship outer hulls and large storage tanks, as
depicted in fig. 1. On such a structure, localization with
respect to individual plates can be beneficial to precisely
triangulate defects such as corrosion patches [1], [2] or
even attempt acoustic tomography as in [3]. In combination
with odometry and an external localization system (laser
theodolite, Ultra-Wide Band (UWB) beacons...), this would
also lead to precise absolute localization of the inspection
results.

Fig. 1. Typical inspection conditions for magnetic crawlers operating on
a structure assembled out of welded steel plates [Source: RoboPlanet3].

On metal plates, Ultrasonic Guided Waves (UGWs) can
mostly be generated using piezo-electric transducers in con-
tact with the plate. When the relation between the frequency,
the plate thickness and the wave velocity is right, these
waves propagate radially around the emitter through the plate
material, like ripples around a stone thrown into a pool. For
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metal plates relevant to inspection tasks, frequencies in the
range of hundreds of kHz are typically appropriate, with
wavelengths of the order of a few centimeters.

In this paper, we are considering short bursts of a few
wave cycles emitted from a transducer mounted on a mobile
platform. When encountering the plate edges, these waves
are reflected normally and these reflections are measured by
a transducer co-located with the emitter to be converted into
electrical signals. From these signals, it is possible to identify
the reflected waves and, from them, recover the distance to
the edge. In a practical case, while working on a rectangular
plate, the acquired signal may include reflections from mul-
tiple edges as well as spurious detections. These sequences
of edge detections are essentially range-only measurements
to a line. We intend to use these ranges to both reconstruct
the geometry of the plate and the localization of the emitter-
receiver device over time. In the robotic community, this is a
SLAM problem with a non-trivial data-association challenge
to identify which edge has been observed at a given time.
Although numerous different works have considered the very
similar problem of room shape reconstruction from acoustic
echoes as a SLAM problem, most of them only consider
simulated measurements and do not describe exhaustively
their map management strategies.

In summary, the contributions of this paper are:
1) a demonstration of the applicability of a sparsity-based

reconstruction of the arrival times of the ultrasonic
reflections in the plate using an L1-regularized least
squares approach;

2) a demonstration of the applicability of room recon-
struction methodologies to on-plate mapping with a
description of the map management strategy, from
initialization to landmark addition and outlier removal;

3) a proof-of-concept for the use of FastSLAM[4] in the
context of on-plate localization for inspection tasks.

II. RELATED WORKS

a) Non-Destructive Evaluation: Ultrasound-based in-
spection technique is the most common tool for Non-
Destructive Evaluation (NDE) on metal plates. In the most
common set-up, the transducers are put in transmission or
in echo mode. In the first one, two transducers are aligned
along the same axis, one transducer is used as an emitter
and the second receives the signal after propagation through
the sample. In the second mode, one transducer acts both as
emitter and receiver and the signal is recorded after reflecting
on the sample. This is typically used with high frequencies
(i.e. 5MHz) for thickness measurements. Alternatively, this
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paper considers the use of Lamb waves, a specific type of
UGWs. Those waves propagate along the metal plate, po-
tentially for large distances. In industry, they have been used
to detect defects in pipelines, rails, or large structures with
success [5], [6], but never deployed on autonomous mobile
systems. Another technique is to use signals obtained during
the inspection from different positions in order to localize
defects using acoustic tomography [1], [2]. This technique
is usually used in the Structural Health Monitoring (SHM)
field with sensors embedded in the structures [7]. However,
for such a technique to work, it is critical to know the
location of the emitters and receivers with a good precision,
which is a challenge for magnetic crawlers operating on an
inspected structure. Most of the mentioned works assume a
known localization of the emitter and receiver with respect
to the inspected plate, and to the authors’ knowledge, there is
no work considering that the UGWs themselves could both
provide the defect detection capabilities and help to infer the
plate geometry and sensor localization.

b) Echo detection: Time delay estimation is often
performed using a matched filter approach, which allows
high-resolution time-delay estimation under the condition
that the signal bandwidth is sufficiently high, and that the
auto-correlation function of the used signals is sufficiently
narrow [8]. More recently, sparsity-based methods using
an L1-regularized least squares approach have surfaced as
super-resolution time-delay estimation, and have been exten-
sively applied to ultrasonic time-delay estimation [9], [10].
This approach promises the detection of highly-overlapping
reflections, even under low Signal-to-Noise Ratio (SNR)
conditions. In our approach, we will use this sparsity-based
approach to solve the time-of-arrival estimation problem.

c) Localization and Mapping: Outside of the field
of NDE, the closest problem to on-plate localization and
mapping is acoustic room reconstruction. In this sub-field
of acoustics and signal processing, there are different works
that attempt to reconstruct the shape of a room based on
acoustic echoes. [11] addressed the problem of a moving
emitter-receiver device to reconstruct a room shape using a
geometric solution. [12] showed that SLAM techniques could
be used to estimate the shape of a convex room. Both works,
however, were only tested in simulation, and did not consider
the presence of spurious echoes. [13] expresses the problem
as an optimization but is again tested only in simulation
and does not address explicitly the ambiguous matching of
measurements to room walls.

Besides, in all the works above, the map management
strategy is not described exhaustively: in particular, they do
not explicit how the geometry of the room is initialized and
how map edges are included when first detected or removed
when proven to be outliers. From a more practical standpoint,
[14] and [15] build a practical room reconstruction system
running on a smart-phone. The latter would be used to emit
sound pulses that would reflect from the room walls. In [15],
a rectangular environment is assumed, with known sizes, and
the focus is on localization. In [14], both the localization and
the wall estimation are considered with only the first echo

but very little information is given on the map management.
In the context of SLAM, data association has always been

a critical step, as described in reference works such as [16].
FastSLAM [4] is an alternative formulation of the SLAM
problem where the state is estimated by sampling and where
each sample contains an estimate of the trajectory and the
map collected along this trajectory. FastSLAM also allows
handling uncertain data association by including multiple
samples for the various association hypotheses. This is par-
ticularly important for the problem at hand since the validity
of wall hypotheses can sometimes only be estimated several
steps after their initialization. To our knowledge, FastSLAM
has not been used previously in the context of the acoustic
room reconstruction and localization problem.

d) Summary: This work will use UGWs to build on
the room reconstruction techniques within a FastSLAM
framework. While moving an emitter-receiver pair on a metal
plate, this will allow recovering the trajectory of the device
and the geometry of the plate. To support fast and robust
echo detection, we make use of an L1-regularized least
squares approach to signal-delay estimation using a sparse
signal model. This approach allows a very accurate time-
delay estimation of multiple overlapping reflections to be
performed, even in low SNR conditions. The next section
will describe how these components combine together to
demonstrate the feasibility of using UGWs for on-plate
localization and plate geometry inference.

III. METHODOLOGY

A. Notations and assumptions

In this paper we are considering a mobile unit transporting
an acoustic emitter-receiver pair on a metal plate. At the k-th
scanning position, the emitter sends an acoustic pulse skb (t).
Under mild assumptions of the acoustic properties of the
ultrasonic probing system, we can model the received trans-
ducer signal skr (t) as a linear system through convolution:

sr(t) = x(t) ∗ sb(t) (1)

with x(t) the environments impulse response and sr(t) which
contains information about reflections on the plate edges. The
superscript k is omitted when unambiguous.

We assume that the plate is a homogeneous material
(steel, aluminium,...) of a constant thickness. We assume the
plate to be a convex polygon, but we do not assume it to
be rectangular, even though this is to be expected in any
industrial case. Because the edges are linear, we will also
assume that only the orthogonal reflection of the signal is
picked up by the receiver. Any other reflection may lead to
secondary echoes after bouncing from several edges but these
are neglected in our work.

Out of the reflected signal skr (t), we will denote as
{rl(k), l = 1 . . . n(k)} the set of detected ranges to the plate
edges, assuming that not all the edges are detected all the
time and that spurious detection may be included in the list.

Additionally, because we assume the transducers are car-
ried by a mobile device on the plate, we assume that some
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level of odometry is available to estimate the displacement
between measurements. Because the inspection crawlers we
are considering are moving on vertical structures (boat hulls,
storage tanks), they can easily embed an accelerometer
from which the crawler heading with respect to gravity
can be observed with a good enough precision. Also, by
construction, to avoid falling from the inspected structures,
these crawlers need to have an extremely good adherence and
incur very little slippage. We can hence assume the odometry
locally very precise. These two assumptions (known heading
and very precise odometry) are an important distinction with
respect to the room reconstruction works.

In the next section, we will describe first how these echoes
can be robustly extracted from the signal and then how they
can be integrated with the proprioceptive measurements into
a localization and mapping framework.

B. Echo detection

One of the key enabling technologies for the on-plate
SLAM approach is the robust and accurate detection of
ultrasonic echoes in the metallic plate. Due to the physics
of the sound propagation in the metallic plate, only signals
with limited bandwidth can be used for probing the underly-
ing material. This limited bandwidth constraint complicates
accurate time-of-arrival estimation for the reflections in the
medium, removing classical signal processing techniques
such as matched filtering from the set of applicable tech-
niques. We apply a super-resolution technique based on L1-
regularized least-squares and the concept of sparsity to solve
this estimation problem. The underlying hypothesis of this
approach is that most of the metal plate does not reflect the
ultrasonic waves, and that only discontinuities in the medium
cause reflections to occur. In that case, the environment
response x(t) from eq. 1 has only a limited number of non-
zero components and can be considered sparse.

After discretization of the problem, this allows us to cast
the following L1-regularized least squares problem:

min
x
|D · x− sr|22 + λ · |x|1 (2)

with x the discretized vector-representation of the impulse
response x(t) of size [nt × 1], sr the discretized received
acoustic signal of size [nt × 1], where nt is the number of
time-samples used in the discretization process. The vector
norms |a|p denote the Lp-norm of vector-object a, with the
well-known fact that the L1-norm promotes sparsity of the
least-squares solution. The matrix D is called a dictionary
matrix of size [nt×nt], and contains time-delayed copies of
the emitted echo signal sb:

D =


sb(1) 0 . . . 0
sb(2) sb(1) . . . 0

...
...

. . .
...

sb(nt) sb(nt−1) . . . sb(1)

 (3)

This minimization problem is a convex problem which can
easily be solved using open-source toolboxes such as the
Matlab CVX toolbox [17].

C. From echoes to edge hypotheses

A single echo rl(k) provides information about the dis-
tance to an object. As will be described later, this information
is useful to refine the parameters of the edge which reflected
this echo. However, this is too ambiguous to initialize a new
edge: it could be any tangent to the circle centered on the
current pose with radius rl(k).

In [12], the authors show that 2 echoes taken at different
known positions are sufficient to define two line hypotheses:
there are only two lines tangent to the two circles defined by
these radii and centered on the known poses. A third echo
can be used to disambiguate between the two lines if the
trajectory is not parallel to the line. Beside requiring three
perception steps and the corresponding delay, using three
echoes requires considering all the O(n3) 3-tuples of ranges.

Instead, we use only the last two echoes and deal with
the multiple hypotheses in a later step. There are several
arguments for this choice: first, the disambiguation with 3
echoes is only useful when the path is not parallel to the edge.
However, in most practical deployments where the robot uses
its accelerometer to realize vertical or horizontal transects,
the path is aligned with the plate edges. Second, even on
a non-parallel path, a clear disambiguation requires a large
translation between the second and third echo to compensate
for the perception noise. Last, when moving on a direction
normal to the edge, two measurements are sufficient for a
unique solution. Both cases are illustrated in fig. 2.

Pt-1

t-1r
rt

Pt

L1

rt-1

Pt-1 tP

rt

L2

L1

Fig. 2. Line hypotheses generated from two measurements at position
Pt−1 and Pt. Left: the robot moves away from the edge and generate a
single hypothesis, right: generic case leading to two hypotheses.

Because of our combinatorial generation of edge hypothe-
ses, a method is required to identify inconsistent edges
and remove them. To this end, we take advantage of the
hypothesis that only orthogonal reflections are reaching the
receiver. Hence, with the assumption of a convex plate, if we
consider two edges L1 and L2 observed from pose P and
Pi the projection of P on Li, then L2 cannot intersect the
segment [PP1] and L1 cannot intersect the segment [PP2].
If one of these conditions is true, then both edges cannot
exist simultaneously on a convex plate because observing one
edge would require the UGWs to cross the other one, which
is not possible. In the following, this test will be denoted as
the consistency check between two edge hypotheses.

D. FastSLAM integration

FastSLAM[4] is a solution to the simultaneous localization
and mapping problem which is particularly relevant in the
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context of uncertain data association. In essence, FastSLAM
relies on a particle filter in the localization space and every
particle holds a hypothesis of the map that can be inferred
from the trajectory of this particle. In order to integrate
FastSLAM into our localization and plate geometry inference
problem, this section will define the particle state, the chosen
map representation, the particle initialization strategy, how
the internal maps are updated and the evaluation of a particle
based on the measured echoes.

1) FastSLAM state: Because of our assumption of a
known orientation, we only consider the sensor coordinates
(x, y) on the plate as a system state. Orientation could be
added to the state without significant changes.

As a map representation, we use a list of infinite lines
represented by an angle and an offset. This is a relatively
simple representation comparing to grid maps for example,
but still, it offers enough flexibility on the plate geometry.
In practice, a line is represented by a pair (θ, b) that defines
the line equation:

cos(θ) · x+ sin(θ) · y + b = 0 (4)

A particle Pi is then described as a trajectory hypothesis
associated with an estimated map defined as a set of lines:

Pi = [(xi(s), yi(s))s=1...k, {(θi,j , bi,j), j = 1 . . . ni}] (5)

2) FastSLAM initialization: Most of the earlier papers
[12], [13] on room reconstruction do not discuss the initial-
ization of the Bayesian filter, which is an important element
for practical implementation. In our case, we rely on the edge
hypotheses generated from section III-C. After waiting for
the second set of range measurements, we estimate a number
of edge hypotheses from which we extract maximally con-
sistent sets. These sets are built using a dynamic program-
ming approach inspired by JCBB/JCDA [16] which will be
omitted here for the sake of page limits. As a result, every
particle is initialized by sampling around the zero position
and randomly selecting a consistent set of edges from the
maximally consistent sets. Including all the edge hypotheses
in all the particles would be a viable alternative given the
outlier removal decision described below. It would however
add more ambiguity than necessary in the estimation.

3) Particle evaluation: Given {rl(k), l = 1 . . . n(k)} the
set of echoes measured at the k-th scanning position, we
evaluate a particle based on its ability to explain the mea-
surements. For a line Li,j = (θi,j , bi,j) in particle Pi, the
expected measured range is:

di,j(k) = | cos(θi,j) · xi(k) + sin(θi,j) · yi(k) + bi,j |

From this range, the likelihood of measurement rl(k) due to
a reflection on the line Li,j is expected to follow a Gaussian
distribution centered on di,j(k), with a standard deviation
consistent with the echo detection uncertainty. If the highest
likelihood over all the lines is lower than a threshold, then
the measurement is considered “unexplained” and allocated
a low probability P0. Otherwise, the index of the line leading
to the highest likelihood is recorded as j?k,l. For the purpose

of map update, the list of unexplained measurements is also
stored to create additional line hypotheses.

For a complete set of echoes, the evaluation of a particle
will then be the product of the likelihood of the n(k)
likelihoods of the independent measurements:

L(Pi) =

n(k)∏
l=1

max

(
P0,max

j
(P (rl(k) | Pi, Li,j))

)
In this formulation, the product has n(k) terms which makes
the evaluation of different particles comparable. Performing
the product over the set of lines of each particle would result
in a varying number of terms, which is incompatible with
importance sampling.

4) Map update: The map update stage has three purposes,
first for “explained” measurements, the associated line needs
to be updated to account for the new piece of information.
Second, the “unexplained” measurements are used to create
additional line hypotheses. Third, consistency checks are
used to eliminate line hypotheses which are no longer
supported by the observations.

a) Line update: Knowing a measurement rl(k) and its
associated line in particle Pi, Li,j?k,l

, one needs to update
the corresponding (θi,j? , bi,j?). The definition of di,j(k)
suggests the use of an Extended Kalman Filter. Even though
such a filter is feasible, the individual measurements can
often be explained equivalently by changing θi,j? or bi,j? ,
which prevents a precise convergence of the filter. To sidestep
this issue, an alternative is to keep a record of the pairs of
sensor poses and ranges associated with this line in a set
Ei,j? , and to minimize the following cost function:

Ci,j?(θ, b) = (6)∑
(s,l)∈Ei,j?

[
(xi(s) cos(θ) + yi(s) sin(θ) + b)

2 − r2l (s)
]2

Although much more expensive, this approach converges
without bias even when the measurements are taken on a
monotonic walk along the edge.

b) New lines: For unexplained measurements, we need
to combine them with the measurements from the previous
pose to create edge hypotheses (sec. III-C). Every pair made
of one previous measurement and a new unexplained mea-
surement is used to generate one or two edge hypotheses. All
the previous measurements are used for additional robustness
against incorrectly associated measurements at the previous
time step. All these hypotheses are added to the line set of
the current particles.

c) Map clean-up: In a final stage of the map update,
all the lines in a particle line set are checked for pairwise
consistency. If two lines are deemed inconsistent and one
of them has been observed (i.e. associated with a measure-
ment) significantly more than the other since its creation,
then the least observed line is marked for deletion. In our
implementation, this criterion is defined as being observed
two additional times. In this stage, we also mark for deletion
lines that were not re-observed enough since their creation.
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For instance, we delete a line that is more than 10 step-
old but has been observed less than 3 times. The simple
delayed outlier removal described in this paragraph is what
makes possible the generation of many edge hypotheses from
the set of detected echoes. This is critical since many of
these hypotheses cannot be ruled out until the robot moves
significantly and changes direction. In comparison, in [12]
the authors made the hypotheses of a random walk of the
agent, which is a much more informative path, but also much
less realistic for a robotic crawler.

IV. RESULTS

A. Experimental setup

At the time of this writing, the experimental setup is not
yet integrated on a robotic crawler. Instead, in order to test
our framework in a setup as close as possible from reality,
we used a pair of emitter-receiver piezo-electric transducer
on two different aluminium plates (plate 1: 470x470x5mm
and plate 2: 600x450x6mm) and moved them by hand on
the vertices of a regular grid with 30 to 40mm spacing.
At every position, the response to 10 ultrasonic scans were
averaged and recorded with their acquisition position. A scan
in this context is the emission of two periods of a 100kHz
sine wave and the recording of 400µs of an analog signal at
1Msample/second.

Emitter-
receiver
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4cm     4cm      4cm    3.5cm 3.5cm   4cm      4cm       4cm
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Edge 4
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Edge 2

Fig. 3. Experimental setup for metal plate 1. The emitter and receiver
transducer can be seen on the bottom right of the figure.

To simulate a sweep of a plate by a robotic crawler, the
corresponding sequence of measurements is selected from
the database and presented to the SLAM framework, with the
theoretic displacement between grid cells used as odometry,
even though the hand placement of the transducers is only
precise up to 2mm. We believe that, apart from the size of the
plates which is smaller than real ones, this setup is a correct
representation of a real system in terms of signal quality.

B. Echo detection

Figure 4 illustrates the echo detection process. Panel a)
shows the emitted signal, which is a 2-cycle burst at 100kHz.
The reflected signal from the plate structure can be seen in
panel b). It shows the pickup of the emission at the beginning
of the signal, and a reflection due to coupling mismatches.
Then, a series of echoes is apparent. Using the L1-based

approach, the impulse response can be reconstructed (see
panel b, orange trace). The method reconstructs the major
echo components of the impulse response, while ensuring
that the solution is sparse. Panel c) shows the reconstruction
error. The fact that this residual is not zero can be explained
by the fact that the direction-dependent filtering of the
transducer is not taken into account during the reconstruction
phase with the signal model D. However, as the remaining
experiments show, this crude approach to the echo detection
process is sufficient for the plate-estimation algorithm.
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Fig. 4. Illustration of the echo detection process. Panel a) shows the emitted
signal. Panel b) shows the echo signal (blue trace) and the reconstructed
impulse response (orange trace). Panel c) shows the reconstruction residual.

C. Edge hypotheses

Fig. 5 gives an example of computed edges from the
combination of the two first measurements on plate 2. As
can be observed, the number of edge hypotheses is relatively
large but a few of them are definitely good estimates of the
real top and bottom edges. At this position, lateral edges
are not observed correctly. The level of uncertainty in the
putative edges is what calls for the FastSLAM framework
and the delayed decision of the validity of the edges.

D. Mapping performance

Figure 6 shows one anecdotal example of a mapping run
on plate 2 by displaying the highest-ranked particle (out of 16
in this case), its line set and its trajectory. The reconstructed
path is clearly visible and the stability of the estimate can
be observed when performing a second sweep of the path
(iterations 225 and 239). The convergence of the estimated
lines to the true plate outline can also be observed, with a
final error in the order of 2cm on the line offsets b (see eq. 4).

5049



Even though this run has a lower precision than the average
case, 2cm is still a very acceptable precision given that the
sensors are positioned by hand and that the wave length in
this plate is approximately 3cm.

r(1): 0.1151,
0.1297,
0.1436,
0.3406,
0.3557

r(2): 0.1454,
0.1594,
0.1788,
0.1933,
0.3163,
0.3333,
0.4484

Fig. 5. Edge hypotheses generated on plate 2 from detected echoes r(1)
(blue dot) and r(2) (purple dot), without consistency check. The purple
rectangle is the outline of the true plate.

1 12 36

124 225 239

Fig. 6. Evolution of the map representation for the highest-ranked particle
at step 1, 12, 36, 124, 225 and 239. The purple frame represents the outline
of the true plate. The red dot is the current estimated sensor pose and the
red line is the history of its estimated trajectory. The darkness of the line is
proportional to the number of times they have been observed. The animation
of the run is available on the linked video.

As a final evaluation, we evaluated in Fig. 7 the precision
and repeatability of our approach through 100 repetitions
in three scenarios. Scenario 1 and 2 consisted of a lawn-
mover path through the plate 1 and 2. The length of the
sweeping path being 81 steps and 108 steps respectively. In
a third scenario, we used plate 1 and simulated localization
and plate geometry estimation over a random walk. In the
three cases, the real measurements described above were
used. However, a single database of measurements was used
for every repetition. The table above presents a summary
of the resulting precision at different steps in the process. It
is clear that the initial estimates after observing only half of
the plate are still very uncertain for all the scenarios, but at

Scenario Angle error [rad] Offset error [m]
Scenario 1, step 50 0.017± 0.057 0.004± 0.032
Scenario 2, step 50 −0.029± 0.154 −0.061± 0.199
Scenario 3, step 50 −0.008± 0.084 −0.031± 0.133

Scenario 1, step 239 0.005± 0.020 0.002± 0.010
Scenario 2, step 239 −0.007± 0.091 −0.015± 0.126
Scenario 3, step 239 −0.001± 0.040 0.002± 0.045

Fig. 7. Average errors and standard deviations on the lines parameters
estimation after 50 and 239 steps. They are evaluated using 100 repetitions.

the end of the simulation, all lines from plate 1 are estimated
with a precision consistent with the signal wavelength. The
poorer performance on plate 2 is due to the somewhat larger
size of the plate and to the presence of artificial defects that
are acting as reflectors and creating detection artifacts.

V. CONCLUSIONS

This paper presented a proof-of-concept for a localization
and plate geometry inference framework for a magnetic
crawler performing inspection of structures assembled out
of metal plates. The results show that there is enough infor-
mation in the reflected signals to achieve a good localization
and mapping precision as long as sufficient coverage of the
plate is performed. The next steps will be to embed this
framework on a robotic platform as presented in fig. 1, to
test on a larger plate, improve the overall system robustness
and consider an active sensing strategy to recover the plate
geometry faster and even more reliably.
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ABSTRACT  

Non-destructive inspection of large structures represents one of the major challenges in various industrial sectors (energy, oil & 

gas, naval, etc.). In recent years, non-destructive testing methods, in particular ultrasonic methods, have been increasingly 

integrated into autonomous robots in order to carry out faster inspections, and therefore more reliable maintenance without the 

direct intervention of human operators. The benefit of using a robot during the inspection of large structures consists in the 

automatization of ultrasonic probe handling and motion, with controlled and reproduceable coupling of ultrasonic probes with the 

structure to be inspected. Some robotized ultrasonic crawlers are currently available, but are based on local ultrasonic 

measurements, that leads to important time of operation to scan large hull surfaces. In addition to their potential to detect defects, 

ultrasonic methods and in particular guided waves are able to propagate for several meters. Guided wave could allow precise 

localization of the robot and also mapping of structural configurations based on acoustic characteristics of reflected or transmitted 

waves. In the present work, the boat hull case is considered. A numerical and experimental analysis was carried out in order to 

study the interactions between different guided wave modes and discontinuities (welds, ribs-stiffeners, and transverse webs). The 

main goal of this study is the development and integration of an inspection technology in an autonomous robot system applied to 

the control of large structures (ex: boat hull, tank, etc.). 

Keywords: Guided waves, NDT, BugWright2, autonomous robots   

  

1 INTRODUCTION 

Non-destructive inspection of large structures in various 

industrial fields increasingly requires the integration of NDT 

techniques into autonomous robots to overcome financial and 

security constraints. 

Ultrasonic Guided Waves (UGW) have shown a potential for 

non-destructive testing (NDT) of large structures such as 

pipelines and storage tanks. In addition to their high sensitivity 

to internal defects, they have the advantage of fast propagation 

over long distances, with very little acoustic energy dissipation, 

allowing inspection of large installations with precise 

localization of the robot and mapping of structural 

configurations based on acoustic characteristics [1] [2].  

1.1 Application of Ultrasonics measurements for the 

inspection of large industrial structures 

Ultrasonic techniques applied to the control of large 

structures can be classified into two categories: 

1.1.1 Conventional ultrasonic technique  

The principle of this method is based on the reflection of all 

or part of the wave when it encounters an interface of a 

different nature than the propagation medium. This method is 

widely implemented on welds or constituent components 

relating to pressure equipment, storage tanks, transport 

pipelines, etc.  

The control of large areas by this technique necessarily 

requires a point-by-point inspection with an often-fine mesh, 

which impacts the control time.  

The integration of point-by-point inspection by conventional 

ultrasound moved by crawler robots is increasingly used, in 

particular for the control of welds. This inspection mode is 

suitable for detecting defects but not detection of the 

boundaries or the welded regions because the bulk waves only 

propagate in the thickness direction.  Therefore, the use of this 

inspection mode is not suitable for robot location, especially on 

unknown structures.  

1.1.2 Long range ultrasonics technics 

For the ultrasonic inspection of large structures, the range of 

the acoustic waves plays an important role. Due to their 

propensity to propagate over long distances with a limited loss 

of energy, this type of elastic wave appears particularly suitable 

for testing installations consisting of large thin structures such 

as pipelines.  

Guided wave inspection techniques are so-called global 

inspection methods and quite often remain qualitative. Thus, 

these techniques enable to provide information about the 

presence and location of boundaries as welds, and stiffeners. In 

addition, these techniques enable the detection of a possible 

defect or damage within the inspected part without necessarily 

trying to characterize it. Furthermore, as the systems currently 

available have too large dead zones near the probes and so, 

suffer of a lack of sensitivity and resolution when more 

restricted size areas are to be scanned.  
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Recently, new processing methods have appeared to improve 

performance in the detection and characterization of defects 

and to facilitate the interpretation of results. These methods are 

based on imaging algorithms (SAFT-Synthetic aperture 

focusing; TFM-Total focusing method; Tomography, 

Topology, etc.) to improve the resolution and therefore 

optimize the interpretation of the results. 

In the majority of industrial applications using guided wave 

inspection of large structures, such as pipelines, the sensors 

remain fixed, in particular for control or Structural Health 

Monitoring (SHM).  

Although the integration of guided wave inspection means in 

autonomous robots could be beneficial for the field of the 

inspection of large structures, the number of studies on this 

subject remains very limited. Nevertheless, we can mention 

certain works which have shown the feasibility of guided 

waves for localization as well as the mapping by a robot [3] 

[4]. 

1.2 Ultrasonic Guided Waves 

Ultrasonic Guided waves (UGW) are generated when the 

ultrasonic wavelength is close to the thickness of the structure. 

In an infinite plate consisting of a single medium, two types of 

guided waves are generally used in Non Destructive Testing, 

such as Lamb waves and SH waves (Shear Horizontal waves). 

These guided waves can be interpreted as modes of resonance 

of the thickness of the plate which propagate along this one, 

following a direction parallel to the substrate. The plate is 

therefore deformed along its entire thickness when the guided 

wave propagates. Lamb waves are polarized in the plane of 

propagation containing the normal to the surface of the guide 

and the direction of propagation. The SH waves are polarized 

perpendicularly to this plane. 

 

Figure 1  Types of waves propagating in an isotropic solid 

and polarizations: (a) longitudinal polarization, (b) vertical 

transverse polarization (c) horizontal transverse polarization 

[5] 

Several sensor technologies are available for the generation 

and detection of guided ultrasonic waves: 

- Piezoelectric transducers: this type of sensor is known 

for its good sensitivity both in transmission and in 

reception. However, conventional PZT sensors do not 

allow mode selectivity, which complicates analysis in 

some applications. A recent study succeeded in 
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developing a special PZT sensor allowing to generate 

only an omnidirectional SH mode [6] [7]. 

- Electro-magnetic acoustic transducers (EMATs): 

EMATs make it possible to generate the SH mode 

directly in the plate without coupling product and to 

receive them in return after their propagation. It should 

be noted, however, that EMATs can generate ultrasonic 

waves only in electrically conductive materials.  EMAT 

probes are composed by a coil connected to a strong 

current source, combined with a polarizing magnet. As 

the coil is placed at the surface of the conductive part, 

the current in the coil produces Lorentz force and 

magnetostrictive forces in the material, which result in 

the propagation of an ultrasonic wave [8]. EMAT probes 

are commonly used to generate volume shear waves in 

the materials and plate waves [9].   

In some cases, EMAT probes are used to generate at the 

same time shear and compressional waves in the volume 

of the parts [10]. EMATS have generally a much lower 

output efficiency compared to PZT. 

- Magnetostrictive transducers: To generate guided 

waves by magnetostriction, a pulsed current is 

introduced, like in EMAT describes above, into a 

transmitter coil coupled to a ferromagnetic material. The 

local modification of the magnetization of the material 

is accompanied by a deformation of the material in a 

direction parallel to the applied magnetic field. This 

deformation, which corresponds to the magnetostrictive 

effect, generates a shear horizontal wave. The probes 

used make it possible to generate waves from a few kHz 

to a few hundred kHz which propagate at the speed of 

ultrasonic waves in the material. 

This work is part of the European project named 

BugWright21 which aims to develop a robotic control 

methodology on boat hulls. The use of guided wave 

inspection has two objectives: 

- mapping of the structure of the hull and location of the 

robot 

- detection of corrosion defects 

In this paper, a numerical and experimental analysis was 

carried out in order to study the interactions between the 

different modes of guided waves and the discontinuities 

encountered on the hull (welds, ribs-stiffeners, and transverse 

webs), in order to propose the optimal methodology in 

relation to the objective of the project. 

2 EXPERIMENTAL AND NUMERICAL ANALYSIS OF 

THE GUIDED WAVES INTERACTION WITH METAL 

PLATE DISCONTINUITIES  

2.1 Introduction  

Ultrasonic guided waves, which were presented above, have 

interesting properties for nondestructive testing of large parts 

 



such as welded metal sheets, thanks to their long-distance 

range propagation, due to a moderate attenuation versus 

distance. So, a study was led to understand the interaction of 

these waves with plate discontinuities. These discontinuities 

consist in welded joints i.e ribs and stiffeners. This section 

consists of studying the propagation of two different modes 

(SH0 and A0). The objective is to determinate the best candidate 

for detecting the plate discontinuities.  

The study was performed using a representative mock-up of 

boat hull. Two approaches have been carried out: 

 2-D numerical modelling by finite element method 

(FEM): in order to analyze the behavior of the waves on 

the discontinuities, and to check their sensitivity for 

detecting discontinuities. 

 Experimental trials: in order to compare and confirm the 

numerical results in real conditions. 

2.2 Design of specific mock-up  

To simplify numerical and experimental tests regarding the 

challenge of boat size and accessibility, a representative mock-

up was designed and manufactured. This mock-up is a part of 

a boat hull at scale one.  

The design of the mock-up is shown in the Figure 2 : 

 

 

(a) 

 

(b) 

Figure 2: Modelling of a specific mock-up for the use of ultrasonic 

guided waves to monitor boat hull. (a) The mock-up handled on his 

transportation bracket and (b) the different views of the mock-up. 

All units in mm. 

The mock-up is of dimensions: 2000 x 3000 x 8.8mm, in steel 

S235 without treatment. The plates have a thickness of 8mm 

with a coating layer of 0.8mm thick in average. It contains 2 

butt welds: a longitudinal one and a transversal one, 4 

longitudinal stiffeners and 2 transversal ones (stringers). All 

the dimensions of the mock-up’s components are highlighted 

on the Figure 2 (b). 

2.3 Numerical modeling  

The software Comsol Multiphysics® is used to simulate guided 

waves propagation on the modelled mock-up. The fundamental 

Shear Horizontal wave SH0 and the fundamental 

antisymmetric Lamb wave A0 are chosen for their non-

dispersive characteristics at low frequencies. The choice of 

these modes will be justified below. The numerical study is 

consisting of propagating the 2 modes (SH0 and A0) in the 

modelized mock-up in order to observe the interactions 

between the modes and the different obstacles i.e longitudinal 

and transversal welds and stiffeners. For all the numerical 

specimens, 2-D plane strain conditions are considered. 

Three 2-D cuts of the mock-up were realized to obtain 3 

different geometrical configurations. These numerical 

specimens are shown in the Figure 3. 

 

 

Figure 3: 2-D modeling of the plate representing the realized mock-

up. Specimen #1: the plate without obstacle – specimen #2: the plate 

with weld obstacle #3: the plate with stiffener obstacle. 

The material properties used for the simulations are 

summarized in the Table 1. 

Table 1: Mechanical properties of the Steel 

Parameter Value 

Density / (kg.m–3) 7850 

Young modulus / GPa 210 

Poisson ratio µ 0.3 

 



These configurations are chosen to represent the different 

cases of obstacles that the waves will encounter on the real 

mock-up during the experiments. It is important to note that the 

antifouling thickness coating of 0.8mm is not considered for 

the propagation of guided waves because its influence on the 

time arrival of modes is negligible. 

Specimen #1: is a free plate without any obstacle. This 

configuration will be use as the reference for modes 

propagation. 

Specimen #2: is a plate with a butt weld zone at the center. 

The weld is characterized by a single V-preparation joint of 

length 10mm with a clearance (trimming) and a heel of 2mm. 

The weld material has the same properties as the plate material 

except for the Young modulus which has been reduced by 10% 

(in order to take into account the heat-affected zone e.g HAZ). 

Specimen #3: is a plate with a welded stiffener of 100mm 

length and 10mm width, located at the center. The stiffener 

material has the same properties as the plate material except for 

the Young modulus which has been reduced by 10% (in order 

to take into account the ZAT). 

2.3.1 Shear Horizontal (SH) Guided Waves 

2.3.1.a Relation of dispersion 

SHn guided waves for a plate of uniform thickness are 

characterized by their dispersion relation which is an important 

feature. This dispersion relation can be written as follow:  

𝑘2 = (
𝜔

𝑐𝑇
)
2

− (
𝑛𝜋

𝑑
)
2

    (1) 

where k is the wavenumber, ω the angular frequency, cT the 

shear wave velocity of the material, n the mode order and t the 

thickness of the plate. Knowing that the frequency can be 

written by f = ω /2π, the group velocity cg can be derived as:  

𝑐𝑔 =
dω

dk
= 𝑐𝑇  √1 − (

𝑛𝑐𝑇

2𝑓𝑑
)
2

   (2) 

Velocity depends both on the ultrasonic frequency and the 

plate thickness in addition to the material properties 

themselves. Dispersion curves of a steel plate of thickness 

d = 8mm, representative of boat hull material, is plotted on the 

Figure 4 below. The fundamental shear mode SH0 (n = 0) is 

nondispersive while the higher modes are dispersive, 

especially close to their cut-off frequencies (i.e 

approximatively 200 kHz for SH1). We just represent the first 

higher mode SH1, but the other ones (SH2, SH3…SHn) appear 

at higher frequencies. 

 

(a) 

 

(b) 

Figure 4: Dispersion curves of SH waves at the frequency range of 

[0 – 350kHz]. (a) Groupe velocity versus frequency and (b) 

wavenumber versus frequency 

2.3.1.b Simulation of the SH0 mode propagation 

The displacement field of the SH0 mode fSH0(y) at each 

frequency can be analytically calculated. By multiplying this 

displacement field with a burst of 5 periods centered at the 

frequency f = 180 kHz we apply this excitation at the left y-

boundary (section x = 0mm) of the models. This excitation sSH0 

(t) is expressed as: 

𝑠𝑆𝐻0(𝑡) = 𝐴. 𝑓𝑆𝐻0. [1 − 𝑐𝑜𝑠 (
2𝜋𝑓𝑡

𝑛
)] 𝑐𝑜𝑠(2𝜋𝑓𝑡). (𝑡 ≤

𝑛

𝑓
)   (3) 

Where A denotes the amplitude of the wave, n = 5 the 

number of the burst’s period and t the time. 

Simulations are conducted in the transient regime for more 

than t = 650 µs duration of propagation. This time is enough to 

ensure a round-trip of the SH0 mode propagation along the 3 

models. For accurate analysis of the wave propagation, a 

suitable mesh sizing and a temporal sampling are required. For 

example, the maximum size of mesh element was 0.2mm and 

the time step 0.1µs. The displacement time dependencies are 

extracted from the FEM solution on the upper free surface of 

all the 3 models with a spatial step of 0.1mm. Finally, a time-

position amplitude matrix is collected in a form of B-Scan. 

Results of the propagation of the SH0 mode along the 3 models 

are detailed at the section §2.4.1. 



2.3.2 Lamb Waves - Antisymmetric mode (A) Relation of 

dispersion 

Lamb waves are also guided plate waves which remain 

confined inside thin structures. There are two basic kinds of 

modes: symmetric mode (Sn) and antisymmetric mode (An), 

both are dispersive. In the case of elastic and isotropic material, 

the Rayleigh-Lamb relation dispersion which permits as to plot 

dispersion curves, can be derived for Sn and An modes as 

follow:  

{
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− 𝑘2 𝑎𝑛𝑑 𝑞2 =

𝜔2

𝑐𝑇
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where d represents the thickness of the plate, k the 

wavenumber, ω the pulsation, cL and cT respectively the 

longitudinal and the shear velocities.  

Dispersion curves of Lamb waves modes of a steel plate of 

thickness d = 8mm representative of boat hull material is 

plotted on the Figure 5: 

 

 

(a) 

 

(b) 

Figure 5 Dispersion curves of Lamb waves at the frequency range 

of [0 – 350kHz]. (a) Groupe velocity versus frequency and (b) 

wavenumber versus frequency 

2.3.2.b Simulation of the A0 mode propagation 

The A0 Lamb wave mode is also simulated by using the 

theoretical displacement fA0 (y) multiplied by a 5-cycle tone 

burst enclosed in a Hanning window. This excitation sA0 (t) is 

also applied at the left boundary (x = 0mm) at approximately 

f = 180 kHz and can be expressed as Eq. (3).  

Simulations are conducted in the time domain for more than 

600µs of propagation. As for the SH0 wave propagation, a time 

position amplitude is collected for dt = 0.1µs and dx = 0.1mm 

to plot B-Scan images of the 3 specimens. 

2.4 Numerical results  

Results are plotted in term of B-Scan images and in A-Scan 

signal to visualize reflections and transmissions of guided 

waves.  

2.4.1 Sensitivity of the SH0 mode 

B-Scan imaging: 

The displacement amplitudes varying as a function of the 

time are stored for each position x in term of a matrix sSH0 (x, 

t). The displacement amplitudes are given in color level versus 

time t and position x. B-Scan images of the 3 specimens are 

represented in Figure 6. 

 

Figure 6: B-Scan images of the SH0 mode propagation along the 3 

specimens 



One can see that, if the incident SH0 mode propagates along 

specimen #1, any reflection is occurred until the wave packet 

reaches the back wall of the plate. 

However, when the incident SH0 mode interacts with the 

weld in specimen #2, a reflection (SH0 reflected) and a 

transmission (SH0 transmitted) appear. In addition, small 

modes conversions (from SH0 to SH1) occur after crossing the 

weld. The same phenomena are observed when the SH0 

incident mode interacts with the rib in specimen #3. 

It can be observed that mode conversions from SH0 to SH1 

are weak but show the presence of the weld and the stiffener as 

obstacles to the propagation of the SH0 mode. Visualization of 

A-Scan signals simplifies the understanding of reflections and 

mode conversions.  

A-Scan signal: 

Analysis in reflection mode 

This analysis is made by plotting a cut at the position 

x = 0mm (left edge of the plate) of the obtained B-Scans. When 

the SH0 mode propagates along the specimen #1, any echo 

appears inside the window between the incident SH0 emitted 

and the SH0 back wall reflection. This SH0 back wall echo 

corresponds to the arrival time of the round-trip echo of the 

incident SH0 and can be calculated easily from the relation 

t = (2 × d) / 3200 = 625µs (with d = 1000mm, the plate’s 

length).  

 

Figure 7: A-Scan signals of the SH0 mode propagating along the 3 

specimens. Visualization of the reflected echoes 

With specimen #2 and specimen #3, SH0 weld reflection and 

SH0 stiffener reflection are clearly visible at t = 310µs. They 

are both followed by the SH1 mode conversion which is 

characterized by a dispersion with multiple echoes. This mode 

conversion from SH0 to SH1 is highest with the stiffener than 

the weld. The analysis in reflection shows that discontinuities 

can be detected in the three specimens by propagating the SH0 

mode. 

Analysis in transmission mode 

This analysis in transmission mode is done by plotting a cut 

of the obtained B-Scans at the position x = 1000mm (right edge 

of the plate). When the SH0 mode propagates along the 

specimen #1, the arrival time of the transmitted wave appears 

at t = 310µs. 

 

Figure 8: A-Scan signals of the SH0 mode propagating along 

the 3 specimens. Visualization of the transmitted echoes 

So, when the SH0 mode propagates along the specimen #2, a 

very dispersive wave packet appears at approximately 

t = 420µs in addition to the SH0 mode at t = 310µs. This large 

wave packet corresponds to the SH1 mode conversion due to 

the presence of the weld. The same observations are done when 

the SH0 mode propagates along the specimen #3, the 

transmitted SH0 appears at t = 310µs with some others echoes 

with a less of conversion mode from SH0 to SH1 due to the 

presence of the stiffener.  

 



2.4.2 Sensitivity of the A0 mode 

B-Scan imaging: 

When the incident A0 mode propagates along the specimen 

#1, any reflection is occurred until the wave packet reaches the 

back wall of the plate as observed with the SH0 mode. 

However, when the incident A0 mode interacts with the weld 

in specimen #2, a reflection (A0 reflected) and a transmission 

(A0 transmitted) appear. In addition, very small modes 

conversions (from A0 to S0) occur. The same phenomena are 

observed when the A0 incident mode interacts with the stiffener 

of the specimen #3. 

One can see that mode conversions from A0 to S0 are very 

weak but show the presence of the weld and the stiffener as 

obstacles of the A0 mode propagation. Visualization of the A-

Scan signals simplifies the understanding of reflections and 

mode conversions of the propagation 

 

Figure 9 B-Scan images of the A0 mode propagation along the 

three models 

A-Scan signal: 

Analysis in reflection mode 

Analysis in reflection is done by plotting a cut of the obtained 

B-Scans at the position x = 0mm. When the A0 mode 

propagates along the specimen #1 any echo appears between 

the incident A0 echo and the A0 back wall reflection echo. This 

A0 back wall echo corresponds to the arrival time of the round-

trip echo of the incident A0 and the corresponding arrival time 

is evaluated at t = 614µs (with cphA0 = 3260m/s, the phase 

velocity of the A0 mode at f = 200kHz).  

With specimen #2 and specimen #3, A0 weld reflection and 

A0 stiffener reflection are clearly visible at approximately 

t = 300µs. They are all preceded by S0 weld conversions which 

are characterized by a small dispersion. This analysis in 

reflection shows once again that discontinuities can be detected 

in the 3 specimens by propagating the A0 mode at low 

frequency within his non-dispersive region. 

 

Figure 10: A-Scan signals of the A0 mode propagating along 

the three specimens. Visualization of the reflected echoes 

Analysis in transmission mode 

Analysis in transmission mode is done by plotting signals at 

the position x = 1000mm of the obtained B-Scans. When the 

A0 mode propagates along the specimen #1, the arrival time of 

the transmitted wave appears at t = 310µs.  

When the A0 mode propagates along the specimen #2, a 

dispersive wave packet with small amplitude corresponding to 

the S0 weld conversion appears at approximately t = 270µs. In 

addition, the A0 transmitted mode appears at t = 295µs. The 

same observations are done when the A0 mode propagates 

along the specimen #3, the transmitted A0 appears at t = 310µs 

preceded by another dispersive echo with small amplitude 

corresponding to the S0 stiffener conversion.  

 



 

Figure 11: A-Scan signals of the A0 mode propagating along the 3 

specimens. Visualization of the transmitted echoes 

2.5 Numerical results – highlights 

FEM simulations performed in this numerical part 

discovered several interesting phenomena concerning the 

propagation behavior of the fundamental SH0 and the 

fundamental A0 guided waves in the frequency range of 0 to 

350 kHz. The principal conclusions can be summarized as 

follow: 

1. SH0 mode propagates easily with leak attenuation over 

long distances with small energy loss when it encounters 

a discontinuity 

2. The conversion of SH0 to SH1 occurs when it encounters 

a discontinuity. Indeed, whether with the weld or the 

stiffener, this phenomenon is observable. This mode 

conversion is higher when guided waves propagate in 

specimen #3. This mode conversion is due to the shape 

of the stiffener (significant thickness variation) and a 

slight variation in mechanical properties at the interface 

plate-stiffener. Based on the dispersion curves of the SH 

modes, it is preferable to carry out simulations or 

experiments at low frequencies where only the SH0 

mode exists. This can help us to avoid mode conversions 

from SH0 to SH1 and any reflection provided is only the 

signature of a discontinuity.  

3. A0 mode also propagates easily with leak attenuation 

over long distances. At the crossing of a discontinuity, a 

small energy loss is also observed. 

4. A0 mode is also converted to S0 when it encounters a 

discontinuity. The same observation made with the SH0 

that mode conversion is higher in the case of the stiffener 

than in the weld is done.  

2.6 Experimental set-up  

In both cases of SH0 and A0 modes, the choices of transducer 

and experimental configuration were made in order to generate 

the interesting modes as being dominant over other guided 

wave modes. 

First, experimental measurements were carried out in a non-

defective area to validate the existence of SH0 and A0 modes. 

Then, measurements were achieved in transmission and 

reflection configurations to investigate the wave interaction 

with butt weld and stiffener. 

For transmission configuration, signal acquisition was 

conducted by sweeping the receiver from 150 mm to 300 mm, 

with 5 mm increments. This allows, via FFT-2D analysis, to 

study all the modes generated in the measurement direction. 

In reflection configuration, two transducers are placed side-

by-side and the attention has been paid to the reflection echo 

from butt weld or stiffener. 

2.6.1 Shear Horizontal (SH) Guided Waves 

EMAT transducers are known as suitable for practical 

generation of SH waves in ferromagnetic and non-

ferromagnetic metals. The Innerspec PowerBox H was used for 

the signal generation and acquisition. A 274A0107 magnet 

with T-L-M-0.500x2-1.000 meander coil were used for the 

emitter, and an identical magnet with the associated model R-

L-M-0.500x2-1.000 coil were used for receiving the signal. 

These EMAT transducers are bidirectional and have a low 

aperture beam profile. 

The excitation signal is a 2 cycles pulse at 230 kHz, which is 

the central frequency of the EMAT transducers. The tension 

peak is at 1200 V and the pulse repetition frequency is 25 Hz. 

The experimental setups in transmission and reflection 

configurations are respectively showed in Figure 12. It is 

important to note that, here the paint coating plays the role of 

lift-off in EMAT measurement. The coating thickness is 

variable on the different zones of the mock-up, in the range of 

0.3 mm to 0.6 mm. 

 

 

 

 



 

a/ Transmission configuration in a non-defective area (di: 

probe displacement increment) 

 

b/ Transmission measurement with the presence of a butt 

weld 

 

c/ Transmission measurement with the presence of a 

stiffener 

 

d/ Pseudo pulse-echo configuration for reflection 

investigation 

Figure 12 SH0 measurement configurations using EMAT 

transducers. 

2.6.2 Lamb Waves - Antisymmetric mode (A0) 

The use of piezoelectric compressional wave transducers to 

generate and receive the A0 mode is quite common [11]. In 

general, the mode S0 is simultaneously generated. Both wave 

modes are dispersive. It is important to note that, in such a 

configuration, the A0 mode generation is omnidirectional. 

Trials are performed on the realized mock-up of 8 mm thick 

with a paint coating. It is found that the Vallen VS150-M 

transducers, working in the range of [80 – 450 kHz] with the 

central frequency of 150 kHz, can generate an energetic A0 

mode. It is noted that this kind of transducer is resonant as it 

has with a very low damping, due to the fact that the piezo 

element of the transducer vibrates freely. So, it produces a 

longer impulsion, consisting in several oscillations than a 

conventional transducer used with industrial echographs to 

detect defects in the materials. 

The excitation signal is a 5 cycles tone burst enclosed in a 

Hanning window. The measurements were conducted at 

different frequencies in the range of 80 kHz – 250 kHz, in 

which the A0 mode is considered as being non-dispersive 

(shown in 2.3.2 numerical study section). Signal acquisition 

was carried out using NI USB 6356 module with the sampling 

rate of 1.25 Ms/s. 

Experimental measurements were conducted following the 

same approach as in the case of the SH0 mode. First, 

transmission measurements were carried out in a non-defective 

area for proving the existence of the A0 mode. Secondly, the 

wave attenuation properties through butt weld and stiffener 

will be shown. Last, some acquisitions in the pseudo pulse-

echo configuration helps to clarify the reflection phenomena. 

 

a/ Through transmission configuration (case of a butt weld) 

 

b/ Pseudo pulse-echo configuration (case of a butt weld) 

Figure 13 Experimental set up using piezoelectric transducers 

2.7 Experimental validation  

2.7.1 Sensitivity of the SH0 mode 

Figure 14 shows the existence of a non-dispersive SH0 wave 

generated by the EMATs and recorded at different propagation 

distance. The velocity of SH0 is measured at 3183 m/s.  

 

Figure 14 Amplitude-versus time signals recorded at 

different measurement locations, in a non-defective zone, in 

transmission configuration Figure 15 shows the frequency-

wavenumber image, obtained from all recorded signals with 

applying a 2D–FFT analysis. The result is in good coherence 

with the theorical dispersion curves, confirms the generation of 

the SH0 mode.  

Figure 16 shows signals obtained in through transmission 

configuration. In both cases, when the receiver probe is placed 

at other side than the transmitter, an attenuation of the signal 

amplitude is observed, in addition to the attenuation due to the 

propagation distance observed in the non-defective zone. The 

attenuation is more important when propagating through 

stiffener than butt weld as shown in Figure 17. 



 

Figure 15: SH0 experimental result in a non-defective zone. 

Frequency-wavenumber presentation obtained from all the 

recorded signals. 

 

a/ 

  

b/ 

Figure 16 Results in form of B-scan presentation of 

transmission measurements, in the cases with presence of 

stiffener and butt weld. 

 

 

a/ Signals in a non-defective area. The two signals are 

normalized with respect to the peak amplitude of the 1st 

signal (in blue) 

 

b/ Signals in the zone with presence of butt weld 

Blue signal: The receiver and the emitter located on one 

side of the butt weld 

Red one: The receiver and the emitter located on two sides 

of the butt weld 

 

c/ Signals in the zone with presence of stiffener 

Blue signal: The receiver and the emitter located on one 

side of the stiffener 

Red one: The receiver and the emitter located on two sides 

of the stiffener 

Figure 17 SH0 attenuation comparison between in a non-

defective zone and when encountering a butt weld or a 

stiffener 

Looking to the reflection components, which are observed 

when emitter and receiver are placed in the same side with 

respect to the discontinuity, it is noted that the reflections are 

more important when the discontinuity consists in a stiffener 

than in the case of a butt weld. 

Another more convenient way to study SH0 reflection is 

using pulse-echo configuration. Here, pseudo pulse-echo 

configuration is exploited, in which the emitter and the receiver 

are placed side-by-side at known distances to the 

discontinuities (as described in the Figure 12-d). The Figure 18 

shows signals achieved when two transducers placed at 

different distance to the stiffener. The SH0 echo reflected from 

stiffener is clearly observed with a good coherence. The 

detection remain possible until 600 mm from where the signal 

to noise ratio becomes critical due to the attenuation.  



 

Figure 18 The detection of SH0 reflection echo when 

encountering a stiffener 

The changes in wave amplitude obtained in transmission and 

reflection configurations seems to be in good agreement. 

Indeed, through a stiffener, there is more loss in transmission 

than in the case of butt weld. Inversely, the amplitude of the 

reflection part is more important. 

2.7.2 Sensitivity of the A0 mode 

The results of measurements in a non-defective zone are 

presented in the Figure 19.  

 

a/ B-scan presentation of all acquisitions in an intact zone 

 

b/ Frequency-wavenumber presentation 

Figure 19 Measurements in an intact zone. Generation of the 

A0 mode which is dominant over the S0 mode. 

The frequency range that gave the best compromise of high 

amplitude signal and non-dispersive working point is 

[90 – 140] kHz. The A0 mode is generated with much higher 

amplitude than the associated S0 mode. The group velocity of 

A0 mode is measured at 3125 m/s, that is in good coherence 

with the theorical value. 

When propagating through butt weld or stiffener, the A0 

mode also suffers a signal amplitude attenuation, but at lower 

level than in the case of SH0 mode. 

 

a/ B-scan presentation of the transmission measurements in 

a zone with a butt weld 

 

b/ B-scan presentation of transmission measurements in a 

zone with stiffener 

Figure 20: Observation of transmission signal loss when 

propagating through a butt weld or a stiffener. The tendance 

is in good coherence with the observations in the case of SH0 

mode propagation. 

As observed in the Figure 20, it is difficult to detect A0 echoes 

from butt weld and stiffener. Even in pseudo pulse-echo 

configuration, by choosing judiciously some measurement 

positions on the mock-up, the echoes detection remains quite 

tricky.      

In general, as the generation is omnidirectional, the signal 

composition is complex as it contains reflection components 

from all reflectors possible as discontinuities and the mock-up’ 

free edges. There are also modes conversions. It should be 

noted that the echoes from discontinuities as stiffeners and 

buttwelds should be with the smaller amplitude than ones from 

free edges. In this case, advanced signal processing methods to 

reveal these components are needed. One of such method will 

be presented in section 3. 



2.7.3 Numerical and experimental studies synthesis  

The guided wave modes, SH0 and A0, were chosen as most 

potential candidates for the control of large industrial 

structures. Numerical simulations and experimental tests 

helped us to understand the behavior of these modes’ 

propagation on the representative mock-up in term of 

transmission and reflection phenomena when encountering 

discontinuities. The results obtained in the experimental tests 

are generally in good agreement with those obtained in FEM 

simulations.  

SH0 has a big advantage as being completely non-dispersive 

and can be properly and selectively generated by EMAT 

transducers, which do not need any viscous acoustic coupling 

agent as special pasts or honey, generally used in such 

applications. When interacting with a butt weld or a stiffener, 

as being polarized in the plane, SH0 is propagating with a small 

energy loss. The mode conversion level from SH0 to SH1 was 

not enough high to be detected experimentally because of its 

small amplitude. In the case of the propagation through a 

stiffener, the reflection part of the SH0 can be detected with a 

good signal to noise ratio. Relating to the butt weld, it was 

difficult to conclude about the reflection. As mentioned in the 

case of the A0 mode, it would need more measurements and 

advanced signal processing to detect a butt weld in a reflection 

configuration. 

Using piezoelectric longitudinal compressional transducers 

having characteristics meeting the needs of the current 

experiment, the A0 mode was properly generated with an 

amplitude dominant over the S0 mode. It is advantageous that 

the generation is omnidirectional. It is recommended to work 

at a frequency range for which the A0 mode is also non-

dispersive. When interacting with discontinuities, A0 exhibits 

a good transmission with low energy losses. This is consistent 

with the fact that, the reflected wave on part was not clearly 

detected. The mode conversion and the omnidirectionality of 

the mode, make the received signals and consequently their 

analysis more complex.   

In the following part a method based on multi transducer 

measurement in reflection configuration, and an advantageous 

algorithm of signal processing to detect discontinuities, are 

presented.  

3 TFM (TOTAL FOCUSING METHOD) ALGORITHM 

BY USING GUIDED WAVES  

3.1 Introduction 

The objective of this chapter is to set up a mapping method, 

based on guided waves, to make possible the detection of 

stiffeners and welds in order to locate them on the structure. 

Several researchers have worked on locating obstacles and 

defects using guided waves. Haider et al [12] worked on an 

impact localization method on composite materials through 2 

clusters of 3 sensors. The method demonstrated that it was 

possible to determine the position of the impact using an 

imaging method based on the time of flight of the guided waves 

generated by the impact. Others have worked on tomography 

imaging using surface waves to detect corrosion [13]. 

Huthwaite et al [14] and He et al [15] have also worked on 

tomography imaging methods. Other algorithms based on the 

Total Focusing Method (TFM) reconstruction technique using 

guided waves have demonstrated their effectiveness [7] [16]. 

This method seems to be interesting since it allows to obtain 2-

D cartographies. At a given position on the mock-up described 

above (later a position of the robot), guided waves can be 

emitted by a phased array sensor. They are propagating in the 

plate and when they encounter discontinuities, they are 

reflected and received by the phased array sensor. Then, using 

TFM reconstruction the area to be controlled can be mapped. 

The dimensions of this area are greater than 1m2 in the case of 

Song [16] and a little less than 1m2 in the case of Huan [7]. But 

in reality, SH0 and A0 guided waves propagate over long 

distances, as it was demonstrated by Huan [17] using SH0 

waves enables propagation over a distance by 20 meters on 

buried tubes. 

To study the use of TFM algorithm for detecting 

discontinuities on the representative mock-up, two approaches 

are led. First, 2-D numerical simulations in the (x, y) plane are 

conducted and second experiments are carried out on the 

representative mock-up. 

3.2 Theory  

By using TFM algorithm for each pixel (x, z) of a given image, 

the intensity is given by the following formula [18]: 

𝐼(𝑥, 𝑧) = | ∑ ℎ𝑡𝑥,𝑟𝑥 (
√(𝑥𝑡𝑥 − 𝑥)

2 + 𝑧2 +√(𝑥𝑟𝑥 − 𝑥)
2 + 𝑧2

𝑐𝑙
)

for all tx, rx

| 

with tx the transmitter and rx the receiver, xrx and xtx their 

abscissas, htx,rx the Hilbert transform of the emitted signal by tx 

and received by rx and cl the propagation velocity of the wave. 

Since the waves used here are guided waves, so zrx = ztx = 0, 

and the formula becomes (Figure 21): 

 

𝐼(𝑥, 𝑦) = | ∑ ℎ𝑡𝑥,𝑟𝑥 (
√(𝑥𝑡𝑥 − 𝑥)

2 + (𝑦𝑡𝑥 − 𝑦)
2 +√(𝑥𝑟𝑥 − 𝑥)

2 + (𝑦𝑡𝑥 − 𝑦)
2

𝑐𝑙
)

for all tx, rx

| 

 

with yrx and ytx the ordinates of the transmitters and receivers. 

 

Figure 21: Explanation of the resolution of the TFM (in green 

the emission and in red the reception, to see the whole 

sequence refer to the video at the following address here) 

https://www.youtube.com/watch?v=cbW2fTT-Nvg


3.3 Numerical setup  

The Finite-Differences in Time Domain (FDTD) approach is 

used to simulate elastic wave propagation in 2D medium 

surrounded by simple sponge boundaries to avoid free edge 

plate reflections [19]. This assumption is made in order to work 

in the same conditions as on a boat hull where dimensions are 

very huge. To conduct simulations, a specimen with an 

inspected area of 1000mm x 1000mm containing ribs and 

stiffeners is modelled in the x-y 2-D plane. This inspected area 

is divided into 1000 x 1000 pixels, i.e 1 pixel / mm.  

Simulations are conducted at the frequency of 200 kHz to 

generate only the A0 mode. This means that the wavelength 

generated in the plate is equal to λ = c/f = 3000/200x103 = 15 

mm. 

According to Song [16], the imaging resolution that can be 

obtained from TFM is limited by wave diffraction. According 

to Rayleigh's criterion [20], the achievable imaging resolution, 

Lr, of the TFM at the imaging point at (0, y) is given by: 

𝐿𝑟 = 0.61
λ

𝑠𝑖𝑛(θ)
  

So, discontinuity fitting into a pixel of 0.61λ x 0.61λ or less is 

difficult to be detected. 

The sensors are modelized by omnidirectional point sources 

which generate a pure A0 mode. 9 omnidirectional point 

sources (sensors) are modeled with a spaced distance (pitch) of 

15 mm apart from each other.  

The acoustic characteristics of the metallic plate, the stiffeners 

and the welds are summarized in the following table: 

 

Table 2: Acoustic parameters of the designed sample for 

TFM simulations 

 
Density 

(kg/m3) 

Phase velocity of mode A0 at 

200kHz (m/s) 

Plate 7850 3260 

Stiffener 7850 2000 

Welds 7850 2500 

 

FDTD simulations is performed with material properties of 

density and elastic wave velocity, so slight acoustic impedance 

variations at the interfaces plate-weld or plate-stiffener are 

favoring wave reflections. These choices were made according 

to the 2D plane strain simulations and experimental 

observations obtained on the mock-up (refer to sections §2.4.1 

and §2.7.1), i.e a stiffener reflects much more energy than a 

weld.  

3.4 Numerical results 

TFM algorithm is first performed on the numerical mock-up 

without defects in order to visualize stiffeners and weld’s 

locations. The selected area contains 3 stiffeners (in green): 2 

vertical and 1 horizontal and 2 welds (in red): 1 vertical and 1 

horizontal. The results of this first numerical study are given in 

the Figure 22: 

 

(a) 

 

(b) 

Figure 22: Numerical simulation result for TFM imaging 

using 9 omnidirectional sensors with15 mm pitch. (a) before 

blind zone removal (b) after blind zone removal 

One can observe that there is a symmetry, respect to alignment 

axis of the sensors, of the obtained mapping related to the TFM 

reconstruction method. Indeed, this method is based on the 

calculation of the time of flight of the emitted wave. Knowing 

that sensors are omnidirectional, the waves could arrive from 

either side of the alignment axis of the sensors. This is 

problematic because it is impossible to determine which side 

the discontinuity comes from (a solution will be proposed in 

the next section). 

The weld on the right of the image is well detected and well 

positioned but because of the symmetry effect, it is visible on 

the left of the image symmetrical about the alignment axis of 

the sensors. The same observation is done for the intersection 

of the 2 welds at the top right (in red). This intersection is also 

visible on the left because of the symmetry.  

It should be noted that the weld and the stiffener which are 

located on the alignment axis of the sensors are, contrary to 

what is expected, visible. However, it should be noted that the 

spot is amplified by the symmetry effect.  

Stiffeners are clearly visible and well located (Figure 22 (a)). 

The intersections between the stiffeners are also clearly visible. 

Indeed, an angle concentrates the energy and sends it back to 

the sensors like a 45° angled reflector as seen in the Figure 22 



(b). It should also be noted that the spot is less marked when it 

is an angle between a stiffener and a weld or two welds. In fact, 

a weld is less visible than a stiffener given its acoustic property 

very similar to the metallic plate.  

A blind zone around the sensors related to the wavelength 

(resolution) estimated around a 2,5λ = 40 mm is visible. In 

order to better visualize the discontinuities, in terms of 

contrast, the blind zone is removed and replaced by zeros 

(Figure 22 (b)). One can observe that the signature of a stiffener 

is different from that of the weld. The signal coming from the 

stiffener is split, since despite the low resolution, the wave can 

discriminate the first and the second edge of the stiffener. 

TFM algorithm is secondly applied with the addition of three 

defects on the numerical mock-up. These defects have a square 

shape of different dimensions, with sides of 0.61λ/2, 0.61λ and 

2x0.61λ. The defects are through thickness holes with density 

 =1.3 kg/m3 and phase velocity c = 340 m/s. The objective is 

to verify the detectability of these defects after interacting with 

discontinuities such as stiffeners and welds. Another objective 

is to confirm the limit of detection (resolution) as expressed in 

the formula (Lr = 0.61
λ

sin(θ)
). 

The results are given below. Defects are marked with red 

crosses on the Figure 23. 

 

Figure 23: Result of the numerical study of TFM imaging 

using 9 omnidirectional point sensors spaced 15 mm apart in 

the presence of 3 defects of different sizes 0.61λ/2, 0.61λ and 

2x0.61λ (red crosses). 

As expected, the visible defects are the those of sizes greater 

than or equal to the theorical resolution i.e., 0.61λ  9 mm. The 

smallest defect of size 0.61λ/2  4.5 mm is missing 

(indetectable).  

3.5 Experimental setup  

After verifying by numerical study that stiffeners, welds, and 

defects are detectable with TFM algorithm, experimental trials 

are conducted in the same conditions.  

3.6 Experimental results  

First, a check that the stiffeners and welds are visible is made. 

A simplified configuration with a single stiffener and a single 

weld is made in order to simplify the understanding of the 

mapping which is complicated by the problem of symmetry 

explained above. The configuration is described in               

Figure 24(a) where the free edge of the plate is located at x = 

250 mm and y =0, the stiffener at x = -150 mm and y = 0 and 

the weld at x = 0 and y = 150 mm. The result obtained after 

propagating the A0 wave and applying the TFM algorithm is 

given in the Figure 24(b).  

 

 

(a) 

 

(b) 

Figure 24:(a) Simplified setup to detect a stiffener and a weld 

(b) result of TFM mapping  

As obtained in the numerical study, the stiffener is clearly 

visible, and the weld is less so. The free edge is also clearly 

visible.  

Secondly, an acquisition using the same experimental set-up 

on a largest area is conducted. This is done to confirm the 

detectability of the different discontinuities on a more complex 

and larger area. The area is constituted of 3 horizontal 

stiffeners, a vertical stiffener, horizontal weld and vertical free 

edge. 

In parallel an equivalent numerical simulation is carried out for 

comparison. The results are given in the Figure 25. 

Interpretations of the obtained results remain difficult due to 

the problem of symmetry despite the visualization of the 

discontinuities on both the numerical (Figure 25 (a)) and the 

experimental (Figure 25 (b)) 2D-cartographies.  



 

(a) 

 

(b) 

Figure 25: Comparison of the numerical (a) and the 

experimental (b) results to detect the different stiffeners and 

weld 

In the following part, a solution to remove symmetry in order 

to facilitate the interpretation is presented. 

3.7 Symmetry removal   

The main problem happened after TFM algorithm application 

is the appearance of a symmetrical image about the sensors 

line. One of the two spots does not correspond to any real 

discontinuity (Figure 26), this means that it is difficult to easily 

locate discontinuity. It is therefore important to find a solution 

to be able to avoid this phenomenon inherent to the method. 

For removing the symmetry, a solution is proposed. This 

solution consists of changing the position of the array sensors 

perpendicularly to their alignment axis. So, 2 cartographies of 

the same area are needed with a shift of 100 millimeters (Figure 

26). Thus, if the positions of the discontinuities are conserved, 

the symmetrical spot will disappear. By multiplying the two 

TFM cartographies pixel by pixel, and also taking the square 

root in order to keep the same scale as before, the spot 

corresponding to the discontinuities remains. The two 

symmetrical spots relating to the 2 different positions disappear 

afterwards (Figure 27). 

 

Figure 26 : schematic for symmetry problem removal 

 

 

(a) 

 

(b) 

Figure 27 : cartographies obtained with TFM (a) before shift 

(b) after shift and multiplication 

From Figure 27, a comparison of the numerical cartographies 

before removal of symmetry (Figure 27(a)) and after removal 

(Figure 27(b)) is made. The symmetries of the defects of size 

18 mm and 9 mm which were located at x = 300 mm have 

disappeared. Also, the symmetry of the weld which was visible 



on the left at x = 180 mm has been greatly reduced but a 

residual spot remains. 

To delete these residual spots due to the symmetry, a 

thresholding operation is applied. By choosing a suitable 

threshold, all residual spots as shown in the Figure 28 are 

removed. 

 

 

Figure 28 : TFM mapping after removal of symmetry and 

after thresholding 

 

This method eliminates the symmetry effect but requires two 

acquisitions at 2 different positions. Therefore it requires more 

time and more computational resource for the reconstruction of 

the TFM cartography. This problem could be solved in another 

way by working on directional sensors which only send waves 

in a half plane.  

4 CONCLUSION  

In this paper, the interaction between guided waves and 

geometric discontinuities of a large structure (boat hull) was 

considered. First, numerical simulations were performed 

considering two types of guided waves (antisymmetric Lamb 

waves (A), shear horizontal waves (SH)) and different 

geometric discontinuities (welding, stiffener). The results of 

this analysis show the advantages of the SH0 mode for the 

detection of discontinuities, particularly in reflection. Indeed, 

the SH0 mode is not dispersive and does not present mode 

conversion in reflection. However, it should be noted that ribs 

are less well detected than welds. These results have been 

validated experimentally on a representative mock-up of a 

section of boat hull.  

In order to overcome the resolution limits of the conventional 

single-element method, a multi-element imaging technique is 

proposed in this work based on the TFM algorithm. First, a 

numerical model was developed based on the characteristics of 

the test mock-up. The results show that all the discontinuities 

were detected with good resolution. The first experimental 

validation tests were carried out using conventional PZT 

transducers. Although the modal selectivity of these sensors is 

not optimal, the results obtained make it possible to detect both 

welds and ribs present on the mock-up. in the future works, the 

optimization of the SH0 mode excitation is considered in order 

to improve the resolution. 
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